THE GENERAL PRINCIPLES OF WASTE PROCESSING WITH RECOVERY OF THEIR ENERGY POTENTIAL ON THE BASIS OF PLASMA TECHNOLOGIES. PART II. GASIFICATION OF THE SEWAGE SLUDGE OF WASTEWATER TREATMENT PLANTS

  • V.A. Zhovtyansky The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • V.N. Orlyk The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • S.V. Petrov The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • M.V. Iakymovych The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: alternative gas fuel, plasma-steam gasification, plasma torch, synthesis gas, hazardous waste, sewage sludge of wastewater treatment plants, vitrification

Abstract

The work is dedicated to the development of technologies for processing of carbon-containing  hazardous waste, in first of all — the sewage sludge of wastewater treatment plants, based on the use of plasma energy sources. The aim was to enhance prospects of their use on the basis of opportunities for commercialization of the proposed technology. In accordance with the thermodynamic approach proposed in the first part of this paper, evaluate performance of the facilities of gasification based on the use of plasma-steamevaluate performance of the facilities of gasification based on the use of plasma-steam technology depending on the power used by the plasma torches as well as their energy efficiency was performed. It is shown that in the stoichiometric mode of the synthesis gas production the energy costs of the gasification process are close to the level of the synthesis gas energy to be obtained. This provides good preconditions for high energy efficiency of processing of various wastes of similar composition in conditions of mobile equipments, as practically eliminated the need for additional sources of energy. In the mode of additional introduction of oxygen in gasification process, the consumption of synthesis gas for own needs equipments, is about 30 %. The rest can be used for the production of electricity to external consumers that will promote commercialization of development. Thus, in the proposed variant the processing technology correspond to the general idea of numerous publications in the world literature, known as the Waste to Energy. Bibl. 27, Fig. 6, Tab. 5.

Downloads

Download data is not yet available.

Author Biographies

V.A. Zhovtyansky, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Cor. Member of National Academy of Sciences of Ukraine, Doctor of Physical and Mathematical Sciences

V.N. Orlyk, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

S.V. Petrov, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Doctor of Technical Sciences

References

Zhovtyansky V.A., Petrov S.V., Kolesnyk V.V., Orlyk V.N., Lelyukh Ju.Y., Nevzglyad Y.O., Goncharuk Ju.A., Iakymovych M.V. Conversion of carbonaceous renewable raw materials by using plasma technology, Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving], 2012, (5), pp. 15–32. (Rus.)

Postanovlenie Kabineta Ministrov Ukrainy ot 27 ijulja 2016 g. № 476 «O gosudarstvennom zakaze na nauchno-tehnicheskie (jeksperimental’nye) razrabotki i nauchno-tehnicheskuju produkciju v 2016 godu».

Zhovtyansky V.A., Orlyk V.N., Petrov S.V., Iakymovych M.V. [The General Principles of Waste Processing with Recovery of their Energy Potential on the Basis of Plasma Technologies. Part I. Environmental Requirements, the Thermodynamics of the Process and its Energy Efficiency], Jenergotehnologii i resurso- sberezhenie [Energy Technologies and Resource Saving], 2015, (4), pp. 24–46. (Rus.)

Bondar O.I., Lozovic’ky P.S, Mashkov O.A., Lozovic’ky A.P. [Ecological state of accumulated sewage sludge in Kiev], Ekologichni nauky, 2014, (7), pp. 38–53. (Rus.)

ZhovtyanskyV.A, Dudnyk O.M., Iakymovych M.V. Oderzhannja sintez-gazu z burogo vugillja ta mulu z vikoristannjam parovogo plazmotrona, Novyny energetyky, 2015, (4), pp. 26–28. (Ukr.)

Ravich M.B. [Efficiency of fuel use], Moscow : Nauka, 1977, pp. 258. (Rus.)

Zhovtyansky V.A., Iakymovych M.V. Plazmovi tehnologii konversii vidnovljuval’noi sirovini jak priklad virishennja problemi pererobki mulovih osadiv stichnih vod, In: Voden’ v al’ternativnij energetic i ta novitnih tehnologijah / Ed. V.V.Skorohoda, Ju.M. Solonina, Kiev : KIM, 2015, pp. 75–83. (Ukr.)

Vatolin N.A., Moiseev G.K., Trusov B.G. [Thermodynamic modeling in high temperature inorganic systems], Moscow : Metallurgy, 1994, 353 p. (Rus.)

Prigozhin I., Kondepudi D. [Modern Thermodynamics. From Heat Engines to dissipative structures], Moscow : Mir, 2002, 461 p. (Rus.)

Grim G. Spektroskopija plazmy, Moscow : Atomizdat, 1969, 452 p. (Rus.)

Drawin H.W. [Validity conditions for local thermodynamic equilibrium], Zeit. fuer Physik, 1969, (228), pp. 99–119. (De)

Biberman L.M., Vorob’ev V.S., Jakubov I.T. Kinetika neravnovesnoj nizkotemperaturnoj plazmy, Moscow : Nauka, 1982, 375 p. (Rus.)

Zhovtyansky V.A., Lelyuh Yu.I., Tkachenko Ya.V. Vplyv perenesennja vyprominjuvannja na vidhylennja vid rivnovazhnogo stanu shhil’noi’ elektrodugovoi’ plazmy: kryterial’nyj pidhid, Ukrai’ns’kyj fizychnyj zhurnal, 2012, 57 (3), pp. 311–321. (Ukr.)

Zhovtyansky V.A. Vplyv faktoriv nerivnovazhnosti na rozpad elektrodugovoji plazmy. 1. Dyfuzijni procesy v objemi plazmy, Ukrainskyj fizychnyj zhurnal,1999, 44 (11), pp. 1364–1370. (Ukr.) 2. Rol’ prystinnyh procesiv, Ukrainskyj fizychnyj zhurnal, 2000, 45 (1), pp. 50–56. (Ukr.) 3. Rol’ vyprominjuvannja i rozshyrennja plazmy, Ukrainskyj fizychnyj zhurnal, 2000, 45 (2), pp. 236–242. (Ukr.)

Dobrohotov N.N. Raschet gazogeneratorov i generatornogo processa, Petrograd, 1922, 33 p. (Rus.)

Strugovshhikov D.P. Raschet generatornogo gaza po metodu prof. N.N. Dobrohotova, Metallurg, 1929, (1), pp. 30–34. (Rus.)

Dobrohotov N.N., Kopytov V.F. Teorija i raschet gazogeneratornogo processa, Teorija i praktika metallurgiji, 1937, 1, pp. 25–40. (Rus.)

Deshalit G.I. Raschety processov gazifikacii topliva, Kharkov : Izdatelstvo Khrkovskogo universiteta, 1959, 168 p. (Rus.)

Dobrohotov N.N. K dinamike diffuzionnyh processov, Kiev : Izdatel’stvo AN USSR, 1948, 30 p. (Rus.)

Ginzburg D.B. Gazifikacija nizkosortnogo topliva, Moscow : Promstrojizdat, 1950, 172 p. (Rus.)

Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration waste, Official Journal of the European Communities, 2000, 332, pp. 91–111.

Mihajlov B.I. Regeneracija tepla v parovihrevyh jelektrodugovyh plazmotronah. Avtoplazmotrony, Teplofizika i ajeromehanika, 2005, 12 (1), pp. 135–148. (Rus.)

Donskoj A.V., Klubnikin V.S., Salangin A.A. Vlijanie dvizhenija gaza na harakteristiki dvuhtempera-turnoj argonodugovoj plazmy v kanale, Zhurnal tehnicheskoj fiziki, 1983, 53 (4), pp. 670–676. (Rus.)

Anshakov A.S., Urbah Je.K., Rad’ko S.I., Urbah A.Ye., Faleev V.A. Parovodjanoj plazmotron dlja gazifikacii tverdyh topliv, 8th Vserossijskaja konferencija s mezhdunarodnym uchastiem «Gorenie tverdogo topliva» (Novosibirsk, 13–16 nojabrja 2012 g.), Novosibirsk : Institut teplofiziki im. S.S.Kutateladze SO RAN, 2012, pp. 61–64. (Rus.)

Verbovskij V.S. Vozmozhnosti primenenija gazodizel’nyh jelektrostancij v Ukraine, Jekotehnologii i resursosberezhenie [Ecotechnologies and Resource Saving], 2003, (1), pp. 13–18. (Rus.)

Leal-Quiros E. Plasma Processing of Municipal Solid Waste, Brazilian Journal of Physics, 2004, 34 (4B), pp. 1587–1593.

Dudnyk A.N. Napravlenija ispolzovanija i razvitija energeticheskih ustanovok na toplivnyh elementah, Teplovaja energetika / Ed. P.Omeljanovskogo, I.Mysaka, L’vov : Ukr. tehnologii, 2010, pp. 346–358. (Ukr.)

Published
2016-09-20
How to Cite
Zhovtyansky, V., Orlyk, V., Petrov, S., & Iakymovych, M. (2016). THE GENERAL PRINCIPLES OF WASTE PROCESSING WITH RECOVERY OF THEIR ENERGY POTENTIAL ON THE BASIS OF PLASMA TECHNOLOGIES. PART II. GASIFICATION OF THE SEWAGE SLUDGE OF WASTEWATER TREATMENT PLANTS. Energy Technologies & Resource Saving, (3), 25-42. Retrieved from https://etars-journal.org/index.php/journal/article/view/184
Section
Energy saving technologies