ACTIVATION METHODS OF CARBON NANOTUBES FOR THE SORPTION OF MOLECULARHYDROGEN (REVIEW)

  • N.M. Martynenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • A.S. Vavrish The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: hydrogen, carbon nanomaterials, nanotubes, sorption, hydrogen storage, accumulation

Abstract

Current research on the sorption properties of carbon nanotubes (CNTs) is reviewed. The sorption-determining structural features of CNTs are analyzed, and their sorption mechanisms for gaseous substances are discussed. Special attention is given to CNT applications for storing of hydrogen gaseous substances. A brief consideration is given to the world state of the art of using hydrogen as an ecologically clean energy source for transport and power engineering on the whole. Basic methods of hydrogen storage presented together with the requirements imposed on the methods. The aim of the present review is to generalize the already achieved results of the structure and thermodynamic processes in carbon nanomaterials study to uniform understanding, and to define the future challenges for this area of studies, in particular concerning the hydrogen sorption by carbon nanotubes. Bibl. 60, Fig. 1, Table 1.

Downloads

Download data is not yet available.

Author Biographies

N.M. Martynenko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

PhD Student

A.S. Vavrish, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

PhD Student

References

Ponomarev-Stepnoy N.N., Stolyarevskiy A.Y. Jenergija [Energy], 2004, 1, pp. 3–9. (Rus.)

Водородная энергетика и топливные элементы —взгляд в будущее: Заключ. Отчет экспертной группы Евросоюза [Hydrogen Energy and Fuel Cells — a look into the future: Conclude. The report

of the expert group of the European Union], 2003. — Access mode: http: www.ioffe.rssi/ru/ FuelCells /FC-final.pdf). (Rus.)

Mesiazz G.A., Prokhorov M.D. Vestnik RAN [Herald of the RAS], 2004, 74 (7), pp. 570–594. (Rus.)

Tarasov B.P., Lototskii M.V. Rossijskij himicheskij jurnal [Rus. chemical. journal], 2006, 50 (6), pp. 5–18. (Rus.)

Middeli A., Dincer I. Int. J. Hydrogen Energy, 2007, 32 (5), pp. 511–524.

Dresselhaus M.S., Williams K.A., Eklund P.ÀC. MRS Bulletin, 1999, 45.

Tarasov B.P. Sbornik trudov «Fullereny i fullerenopodobnye struktury v kondensirovannyh sredah» Minsk : Belarus. gos. universitet, 2000, p. 113. (Rus.)

Kulik O.P., Chernyshev L.I. Vodorodnaja jenergetika: hranenie i transportirovka vodoroda (Оbzor) [Hydrogen energy: storage and transportation of hydrogen (review)], pp. 54. (Rus.)

Diachkov P.N. Zhurn. neorg. himii [Journal. neorgan. chemistry], 2001, 46, pp. 101. (Rus.)

Tomanek D. Eds., Enbody R.J. Science and Application of Nanotubes.(2000). Kluwer Academic, Plenum Publishers, NY.

Ivanovsky A.L. Uspehi himii [Progress of chemistry], (1999).68, pp. 119. (Rus.)

Rakov E.G. Uspehi himii [Progress of chemistry], 2000, 69, pp. 41. (Rus.)

Hu J., Odom T.W., Lieber C.M. Acc. Chem. Res. (1999).Vol. 32, pp. 435.

Ajayan P.M. Chem. Rev. (1999).Vol. 99, pp. 1787.

Rakov E.G. Zhurn. neorg. himii [Journal. neorgan. chemistry], 1999, 44, pp. 1827. (Rus.)

Eletskiy A.V. Uspehi fizicheskih nauk [Progress of physical sciences], 1997, 167, pp. 945. (Rus.)

Eletskiy A.V. [Carbon nanotubes and their emission properties]. Uspehi fizicheskih nauk [Progress of physical sciences], 2002, 172 (4), pp. 401–438. (Rus.)

Eletskiy A.V. [Endohedral structure]. Uspehi fizicheskih nauk [Progressive of Physical Sciences], 2000, 170 (2), pp. 113–142. (Rus.)

Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes, 1996, San Diego: Academic Press.

Saito R, Dresselhaus G., Dresselhaus M.S. Physical Properties of Carbon Nanotubes, London: World Scientific Publ, 1998.

Ebbesen T.W. (1997). Carbon Nanotubes: Preparation and Properties, Boca Raton, Fl.: CRC Press.

Nijkamp M. G., Raayamakers J. E. M. J., Dillen A.J., Jong K. P., Appl. Phys. A., 2001, 72, pp. 619–623.

Poirier E., Chahine R., Behard P. et al. Appl. Phys. A., 2004, 78, pp. 961–967.

Heine T., Zhechkov L., Seifert G. Phys. Chem. Chem. Phys. (2004).6, pp. 980–984.

Zuettel A. Naturwissenschaften. 2004, 91 (4), pp. 157–172.

Westerwaal R.J., Haije W.G. Evaluation solid— state hydrogen storage systems. Current status, Rep. ECN–E–08–043, (Apr., 2008), pp. 75.

Nechaev Y.S., Alekseeva O.K. [Methodological, Applied and Thermodynamic Aspects of Hydrogen Sorption by Graphite and Related Carbon Nanostructures]. Uspehi himii [Progress of Chemistry], 2004, 73 (12), pp. 1308–1337. (Rus.)

Hou P.X., Xu S.T., Ying Z. et al. Carbon, 2003, 41, pp. 2471–2476.

Shiraishi M., Takenobu T., Ata M. Chemical Physics Letters, 2003, 367, pp. 633.

Rinzler A.G., Liu J., Dai H., Nikolaev P., Huffman C.B., Rodriquez-Macias F.J., Boul P.J., Lu A.H., Heymann D., Colbert D.T., Lee R.S., Fischer J.E., Rao A.M., Eklund P.C., Smalley R.E. Appl. Phys.A: Solids Surf.,1998, 67, pp. 29.

Liu J., Rinzler A.G., Dai H.J., Hafner J.H., Bradly R.K., Boul P.J., Lu A., Iverson T., Shelimov K., Huffman C.B., Rodriquez-Macias F.J., Shon Y.S., Lee T.R., Golbert D.T., Smalley R.E., Science, 1998, 280, pp. 1253.

Ye Y., Ahn C.C., Witham V., Fultz B., Smalley R.E. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999, 74 (16), pp. 2307–2309.

Bower C., Kleinhhammes A., Wu Y., Zhou O. Chemical Physics Letters, 1998, 288, pp. 481.

Lombardi L. et al. Eletrochemical and Solid State Letters, 2004, 7 (5), pp. 115.

Tsygankova L.E., Vigdorovich V.I., Zverev A.A., Alehina O.V. [Study of hydrogen storage multiwall carbon nanotubes]. Vestnik Tambovskogo universiteta. Serija: Estestvennye i tehnicheskie nauki [Journal Herald of the University of Tambov. Series: Natural and Technical Sciences.], 2012, 17 (4), pp. 1160. (Rus.)

Tkachev A.G. [The carbon nanomaterial “Taunit” - the structure, production and use], Perspektivnye materialy [Perspective materials], 2007, 3, pp. 5–9. (Rus.)

Aleksashina E.V., Mishchenko S.V., Sotskaya N.V., Tkachev A.G., Vigdorovich V.I., Dolgikh O.V. Kondensirovannye sredy i mezhfaznye granicy [Condensed substance and interphase boundaries], (2009).11 (2), pp. 101–105. (Rus.)

Chen Y., Shaw D.T., Bai X.D. (2001). [GaN-filled carbon nanotubes: synthesis and photoluminescence]. Applied Physics Letters, 78, pp. 2128.

Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhaus M.S. Science, 1999, .286, pp. 1127–1129.

Shulga Y.M., Tarasov B.P., Krinichnaya E.P., Muradyan V.E., Morozov Y.G., Shulga N.Y. V sb. trudov "Fullereny i fullerenopodobnye struktury v kondensirovannyh sredah", Minsk, 2000, 41. (Rus.)

Tarasov B.P. Int. Sci. J. Alternative Energy and Ecology, 2000, 1, pp. 168.

Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S. and Heben M.J. [Storage of hydrogen in single-walled carbon nanitubes], Nature, 1997, 386, pp. 377–379.

Lawrence J., Xu Gu. Applied Physics Letters, 2004, 84, pp. 918.

Brown C.M., Yildirim T., Neumann D.A., Heben M.J., Gennett T., Dillon A.C., Alleman J.L., Fischer J.E. Chemical Physics Letters, 2000, 329, pp. 311.

Liu C., Yang Q.H., Tong Y. et al. Applied Physics Letters, 2002, 80, pp. 2389.

Dillon A.C. et al. Fullerenes, 1999, 3, pp. 716.

Hirscher M., Becher M., Haluska M., Dettlaff-Weglikowska U., Quintel A., Duesberg G.S., Choi M.Y., Downes P., Hulman M., Roth S., Stepanek I., Bernier P. Appl. Phys. A., 2001, 72, pp. 129.

Heben M.J., Dillon A.C., Genett T., Alleman J.L., Jones K.M., Parilla P.K. Int. Symp. Metal-hydrogen Systems, (Oct.1-6, 2000, Noosa, Australiya), Absracts. 2000, 2.

Dillon A.C., Heben M.J. Appl. Phys. A., 2001, 72, pp. 133.

Tarasov B.P., Goldshleger N.F., Moravsky A.P. Uspehi himii [Progress of Chemistry], 2001, 70 (2), pp. 149–166. (Rus.)

Kuznetsova A., Mawhinney D.B., Naumenko V., Yates J.T., Liu J., Smalley R.E. Chemical Physics Letters, (2000).321, pp. 292.

Zhu H.W., Chen A., Mao Z.Q., Xu C.L., Xiao X., Wei B.Q., Liang J., Wu D.H. J. Mater. Sci. Lett. 2000, 19, pp. 1237–1239.

Haluska M. et al., in Electronic Properties of Molecular Nanostructures (AIP Conf. Proc., 2001, 591, Eds H. Kyzmany et.al.) (Melville, NY: AIP, 2001, pp. 603.

Huang W. Z., Zhang X. B., Tu J. P. et al. Mater. Chem. and Phys., 2002, 78, pp. 144–148.

Gao H., Wu X. B., Li J. T.et al. Applied Physics Letters, 2003, 83, pp. 33–89.

Lui W., Zhao Y. H., Li H. et al. J. Phys. Chem. C. 2009, 113 (5), pp.2028–2033.

Yildirim T., Ciraci S. Physical Review Letters, 2005, 94, P. 175501/1–175501/4.

Li X., Zhu H., Ci H. et al. Carbon, 2001, 39, pp. 2077.

Tarasov B.P., Goldshleger N.F. [Hydrogen sorption by carbon nanostructures] International Scientific Journal for Alternative Energy and Ecology, 2002, 3, pp. 31. (Rus.)

Eletskiy A.V. [Sorption properties of carbon nanostructures]. Uspehi fizicheskih nauk. Obzory aktual'nyh problem [Progressive of Physical Sciences. Reviews of topical problems], (November, 2004, 174, (11). (Rus.)

Published
2015-08-20
How to Cite
Martynenko, N., & Vavrish, A. (2015). ACTIVATION METHODS OF CARBON NANOTUBES FOR THE SORPTION OF MOLECULARHYDROGEN (REVIEW). Energy Technologies & Resource Saving, (4), 3-14. Retrieved from https://etars-journal.org/index.php/journal/article/view/151