ELECTROTHERMAL FLUIDIZED BED TECHNIQUE USING FOR REALIZATION OF HIGH-TEMPERATURE TECHNOLOGICAL PROCESSES (REVIEW)

  • K.V. Simeiko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • B.K. Ilienko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • M.A. Sidorenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: high-temperature processes and technologies, electrothermal fluidized bed

Abstract

When implementing a number of high-temperature processes with heat supply to the reaction zone (allothermic processes), it is impossible or economically inexpedient the burning of fossil fuels to achieve the required temperature level. The possibilities of these processes implementation through the use of electrothermal fluidized bed (ETFB) techniques are considered. Such processes include, for example, the production of hydrogen by the pyrolysis of hydrocarbon gases, the production of silicon carbide and other carbides, the production of artificial graphite and the thermal purification of natural graphite, the high-temperature heating of gases and gas mixtures. These processes can be carried out in the temperature range of 600–3000 °С using fine-dispersed materials or directly in the gas phase using ETFB. In a number of processes ETFB technology can be applied as a source of high temperature gas production, used either for the implementation of this technological process, or for ensuring the operation of technological or heat engineering equipment. Also considered the main structural characteristics of the equipment that ensure the implementation of processes in the ETPS. Bibl. 37.

Author Biographies

K.V. Simeiko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

B.K. Ilienko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

References

Nesenchuk A.P., Lisienko V.G., Timoshpolsky V.I., Sednin V.A., Malevich Yu.A., Romanyuk V.N., Kochetkov A.V. [High temperature processes and installations]. Ed. by V.G.Lisienko. Minsk : Vysshaja shkola, 1988. 320 p. (Rus.)

Berzan V.P., Anisimov V.K. [About physicochemical processes at electrolytic decompozition of the water]. Problemy regional’noj jenergetiki [Problems of regional energy]. 2006. No. 1. pp. 87–97. (Rus.)

Hydrogen production and storage R&D priorities and gaps. OECD/IEA, 2005. 36 p.

Kuleshov N.V., Kuleshov V.N., Bahin A.N., Ibragimova A., Slavnov Ju.A. [Development of a new elemental base for alkaline electrolysers of water]. Estestvennye i tehnicheskie nauki [Natural and technical sciences]. 2011. No. 6. pp. 75–79. (Rus.)

Pat. 35677 Ukraine, IPC: C 25 B 1/00. Sposіb pіdvishhennja efektivnostі elektrolіzu [Method of increasing the efficiency of electrolysis] S.A. Rusakov; Applicant and patent holder: OJSC «Khartron». № u201807114; applic. date: 22.05.2009; publ. date: 25.09 2009. Bul. 18. (Ukr.)

Pat. RF 2501890C1, IPC Y 02 E 60366. Jelektrolizer dlja poluchenija vodoroda i kisloroda iz vody [Electrolyzer for the production of hydrogen and oxygen from water]. V.V.Barannikov, K.G. Bol’shakov, D.G.Kondrat’ev, A.V.Potanin, E.G. Shihov; Applicant and patent holder: OJSC «Urals Electrochemical Combine». №. 2012119503a; applic. date: 11.05.2012. publ. date: 20.12.2013. (Rus.)

! 7. Ramato Ashu Tufaa, Jaromнr Hnбta, Michal Nмmeиeka, Roman Kodэma, Efrem Curciobc, Karel Bouzeka. Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis — Water electrolysis energy system. Journal of Cleaner Production. 2018. 203. pp. 418–426.

Kuleshov N.V., Korovin N.V., Udris E.Ja., Kuleshov V.N., Bahin A.N. Razrabotka novyh jelektroka¬¬talizatorov dlja nizkotemperaturnogoj elektroliza vody [Development of new electrocatalysts for low-temperature electrolysis of water]. Jelektrohimicheskaja jenergetika [Electrochemical energy]. 2012. 12 (2). pp. 51–58. (Rus.)

Haotian Wang, Hyun-Wook Lee, Yong Deng, Zhiyi Lu, Po-Chun Hsu, Yayuan Liu, Dingchang Lin & Yi Cui Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature communications. 2015. Macmillan Publishers Limited. 8 p.

U.S. Department of Energy. — https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming

Yaser Khojasteh, Salkuyeh Bradley, A. Saville Heather, L. MacLean. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy. 2017. 42, Iss. 30. pp. 18894–18909.

Gary J. Stiegela, Massood Ramezanb Hydrogen from coal gasification : An economical pathway to a sustainable energy future. International Journal of Coal Geology. 2006, 17 Jan. Vol. 65, Iss. 3–4. pp. 173–190.

Xing L. Yan, Ryutaro Hino Nuclear Hydrogen Production Handbook. Taylor and Francis Group LLC. 2011. 433 p.

Kozhan A.P., Bogomolov V.A. Khovavko A.I., Bondarenko B.I., Simeiko K.V. Issledovanie processa poluchenija vodoroda pirolizom uglevo- dorodov v apparate s jelektrotermicheskim psevdoozhizhennym sloem [Research of hydrogen production by hydrocarbons pyrolysis in the reactor with electrothermal fluidized bed]. Energotehnologii i resursosberezhenie [Energy Technologies and Resource Saving]. 2012. No. 2. pp. 27–31. (Rus.)

Cvetkov Yu.V., Nikolaev A.V., Samohin A.V. Plazmennye processy v metallurgii i tehnologii neorganicheskih materialov [Plasma processes in metallurgy and technology of inorganic materials]. Sovremennaja jelektrometallurgija [Modern electrometallurgy]. 2013. No. 4. pp. 40–46. (Rus.)

Shapovalov V.O., Shejko І.V., Remіzov G.O. Plazmovі procesi ta ustatkuvannja v metalurgії [Plasma processes and equipment in metallurgy]. Kiev : Hіmdzhest, 2012. 384 p. (Ukr.)

! 17. Ivanova L.I., Grobova L.S., Sokunov B.A., Sarapulov S.F. Indukcionnye tigel’nye pechi. Uchebnoe posobie. [Induction crucible furnaces. Tutorial]. Ekaterinburg : Uralskiy Gosudarstvennyi Tehnicheskiy University — Uralskiy PI. 2002. 87 p. (Rus.)

Filimonenko A.N. Vakuumnye indukcionnye pechi, oblast’ primenenija [Vacuum induction furnace application area]. Lit’e i metallurgija [Casting and metallurgy]. 2012. No. 3. pp. 248–250. (Rus.)

! 19. Andrievskij R.A. Nanorazmernyj karbid kremnija: sintez, struktura, svojstva [Nanoscale silicon carbide: synthesis, structure, properties]. Uspehi himii [Successes of Chemistry]. 2009. No. 78 (9). pp. 889–900. (Rus.)

Derevyanko I. V., Zhadanos A. V. Mathematical Modeling of Heat Power Processes of Silicium Carbide Production in Acheson Furnace. Metallurgical and Mining Industry, 2010, 2 (5). pp. 330–335.

! 21. Moskovskih D.O. Poluchenie submikronnogo poroshka karbida kremnija i nanostrukturirovannoj keramiki na ego osnove [Obtaining submicron powder of silicon carbide and nanostructured ceramics based on it]. Dissertation of the candidate of technical sciences. Moscow, 2015. 166 p. (Rus.)

Marmer Ye.N. Uglegrafitovye materialy [Carbon-graphite materials]. Moscow : Metallurgija, 1973. 136 p. (Rus.)

Borodulya V.A., Vinogradov L.M., Greben’kov A.Zh., Mikhaylov A.A. Sintez karbida kremniya v elektrotermicheskom reaktore s kipyashchim sloyem uglerodnykh chastits [Synthesis of silicon carbide in an electrothermal fluidized bed reactor of carbon particles]. Goreniye i plazmokhimiya [Combustion and plasma chemistry]. 2015. 13 (2). pp. 92–102. (Rus.)

Borodulya V.A., Vinogradov L.M., Greben’kov A.ZH., Dubkova V.I., Mikhaylov A.A., Pinchuk T.I. Karbotermicheskiy sintez poristykh poroshkov karbida kremniya v reaktore elektrotermicheskogo kipyashchego sloya i perspektivy yego ispol’zovaniya v polimernykh kompozitakh [Carbothermal synthesis of porous powders of silicon carbide in an electrothermal fluidized bed reactor and prospects for its use in polymer composites]. Materials of the 6th International Symposium «Poristyye pronitsayemyye materialy i tekhnologii i izdeliya na ikh osnove» [Porous Permeable Materials and Technologies and Products Based on Them]. Minsk, 19–20 Oct., 2017. pp. 524–538. (Rus.)

Vjatkin S.E., Deev A.N., Nagornyj V.G., Ostrovskij V.S., Sigareev A.M., Sokker T.A. Jadernyj grafit [Nuclear graphite]. Moscow : Atomizdat, 1967. 180 p. (Rus.)

Tarabanov A.S., Kostikov V.I. Silicirovannyj grafit [Silicized graphite]. Moscow : Metallurgija. 1977. 208 p. (Rus.)

Zajkovskij A.V., Zamchij A.O., Nerushev O.A., Novopashin S.A., Sahapov S.Z., Smovzh D.V. Jelektrodugovaja konversija metana [Electric arc conversion of methane]. Himija i himicheskaja tehnologija [Chemistry and Сhemical Technology]. 2013. Vol. 56, iss. 5. pp. 118–121 p. (Rus.)

Fedorov S.S., Gubinskiy M.V., Foris’ S.N. Vybor razmerov rabochego prostranstva elektrotermicheskikh pechey kipyashchego sloya dlya pererabotki uglerodnykh materialov [Selection of the size of the working space of electrothermal fluidized bed furnaces for processing carbon materials]. Metallurgicheskaya i gornorudnaya promyshlennost’ [Metallurgical and mining industry]. 2014. No. 4. pp. 87–90. (Rus.)

! 29. Fedorov S.S., Gubinskii M.V., Foris S.N. Mathematical Simulation of the Structural Properties of Packed and Fluidized Beds. Journal of Engineering Physics and Thermophysics. 2016. No. 89 (3). pp. 627–635.

Kislykh V.V. Piston Gasdynamic units with MCC. Progress in Astronautics and Aeronautics. 2002. 198. P. 321–333. (Rus.)

Kislyh V.V., Krapivnoj K.V. Ispol’zovanie neizojentropicheskogo mnogokaskadnogo szhatija dlja poluchenija plotnogo vysokotemperaturnogo gaza [Using non-isentropic multistage compression to obtain a dense high-temperature gas] // Teplofizika vysokih temperature [High Temperature Thermophysics]. 1990. 28 (6). pp. 1195. (Rus.)

Zhukov M.F., Fomin V.M. Vysokojenergeticheskie processy obrabotki materialov [High-energy processing of materials]. Nizkotemperaturnaja plazma [Low-temperature plasma]. 2000. 18. P. 425. (Rus.)

Kolbanovskij Ju.A., Shhipachev V.S., Chernjak N.Ja, Chernysheva A.S., Grigor’ev A.S. Impul’snoe szhatie gazov v himii i tehnologii [Pulse compression of gases in chemistry and technology]. Moscow : Nauka, 1982. 240 p. (Rus.)

Zlatin N.A., Mishin G.I. Ballisticheskie ustanovki i ih primenenie v jeksperimental’nyh issledovanijah [Ballistic installations and their application in experimental studies.]. Moscow : Nauka, 1974. 334 p. (Rus.)

Volov D.Ju. Teplotehnicheskie ustrojstva dlja poluchenija plotnogo vysokotemperaturnogo gaza [Thermal devices for producing dense high-temperature gas]. Teplofizika vysokih temperatur [Temperature Thermal Physics]. 2006. 44 (4). pp. 604-626. (Rus.)

Makhorin K.E., Karp I.M., Kozhan A.P. Vysokotemperaturnaja pech’ s jelektrotermicheskim kipjashhem sloem dlja nagreva vodoroda [High-temperature furnace with electrothermal fluidized bed for hydrogen heating], Informacionnoe pis’mo instituta gaza AN USSR [Information Letter of Gas Institute of Academy of Sciences of Ukrainian Soviet Socialist Republic]. Kiev : Naukova Dumka, 1970, No. 15, 32 p. (Rus.)

Bogomolov V.O. Kozhan A.P., Bondarenko B.I., Khovavko O.I., Simeiko K.V. Kapsulirovanie kvarcevogo peska pirouglerodom v jelektro- termicheskom psevdoozhizhenom sloe [Research of the process of quartz sand encapsulation by pyrolytic carbon]. Energotechnologii i resursozberezhenie [Energy Technologies and Resource Saving]. 2013. No. 5. pp. 36–40. (Rus.)

Published
2019-03-11
How to Cite
Simeiko, K., Ilienko, B., & Sidorenko, M. (2019). ELECTROTHERMAL FLUIDIZED BED TECHNIQUE USING FOR REALIZATION OF HIGH-TEMPERATURE TECHNOLOGICAL PROCESSES (REVIEW). Energy Technologies & Resource Saving, (1), 35-44. https://doi.org/10.33070/etars.1.2019.03
Section
Thermophysical bases of energy processes