ANALYSIS OF THE PROCESS OF WATER VAPOR CONDENSATION WITHIN GAS ATMOSPHERES AND COMBUSTION PRODUCTS

  • B.S. Soroka The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • V.V. Horupa The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: atmospheric combustion air (oxidant), moisture content of combustion products, absolute air humidity, relative air humidity, blast furnace gas, coke oven gas, ombustion products, dew point natural gas, wet bulb temperature

Abstract

Water vapor is the most important working medium by the processes of energy generation and conversion. The H2O content in gases and gas mixtures serves as a standard of their desiccation by technological processes. The presence of vapor in the air-oxidizer provides a reduction of harmful substances formation by combustion. The values characterizing the saturation state: the dew point tdew and the wet bulb thermometer twb temperature are used to evaluate an approximation degree of the wet gas system (any air, gas mixtures or combustion products) to the condensation state. The values of these parameters have been determined for moist air in dependence on the basic temperature and the relative humidity of an air. The lower are the temperature values tdew, twb, the wider is the region of H2O existence in the vapor phase. The EUROSTAT’s gas fuels list includes the natural gas (NG), blast furnace gas (BFG), coke oven gas (COG). Calculations of dew point values of the combustion products for the gas fuels: NG, COG, BFG has been carried out in dependence on the characteristics of the combustion air: the oxidizer excess factor l, the temperature ta and the relative humidity ja. The dew point tdew values have been found under standard conditions for the combustion products of the listed gas fuels, presented by stoichiometric (l = 1.0) mixtures with dry air: pure methane, NG, COG, BFG. The tdew values make — respectively 59.3; 58.5; 11.1; 61.5. In the case of saturated air as an oxidizer at temperature of 25 °C, the dew point for the combustion products of the listed fuels makes the folloving values: 62.0; 61.5; 25.6; 64.0 °C respectively. The fractions of H2O in the vapor and liquid phases of natural gas combustion products are determined as a function of temperature by condition that the 100 % content of H2O in from of vapor state (without water) corresponds to the saturation temperature (or dew point).This temperature has value of about 60°C for combustion products under stoichiometric air/gas ratio. Bibl. 31, Fig. 10, Tab. 3.

Downloads

Download data is not yet available.

Author Biography

B.S. Soroka, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Doctor of Technical Sciences, Professor

References

Soroka B.S., Zgurskyi V.O, Khinkis M.Ya. Nizkoemissionnoye szhiganiye podgotovlennykh gazo-vozdushnykh smesey v kamere s retsirkulyatsiyey produktov sgoraniya [Low-emission burning of premixed gas-air mixtures in the chamber by combustion products recirculation], Sovremennaya Nauka — Issledovaniya, Idei, Rezul’taty, Tekhnologii, 2013, (1), pp. 368–374. (Rus.)

Energy balance sheets data 2012. Eurostat statistical book. Luxembourg, 2015.

Naftogaz opublikuvav osnovni pokazniki diyal‘nosti gazovogo rinku Ukraini za 2016 rik. — [Online resource]. — Access mode: http://www. naftogaz.

com. (Ukr.)

GlushkoV.P., Gurvich L.V., BergmanG.A. Tablitsy termodinamicheskikh svoystv [Tables of thermodynamic properties], Moscow : Nauka, 1978, 327 p. (Rus.)

Vil’yams F.A. Teoriya goreniya [Theory of combustion], Moscow : Nauka, 1971, 616 p. (Rus.)

Prokhorov A.M. Fizicheskiy entsiklopedicheskiy slovar’ [Physical encyclopedic dictionary], Moscow : Sovetskaya entsiklopediya, 1984, 944 p. (Rus.)

Lukanin V.N., Shatrov M.G., Kamfer G.M. Teplotekhnika [Heat engineering], Moscow : Vysshaya shkola, 2005, 671 p. (Rus.)

Kuhling H. Spravochnik po fizike [Handbook of Physics], Moscow : Мir, 1982, 520с. (Rus.)

Magadeyev V.Sh. Korroziya gazovogo trakta kotel’nykh ustanovok [Corrosion of the gas path of boiler plants], Kiev : Energoatomizdat, 1986, 272 p. (Rus.)

Sosnin Yu. P., Bukharkin Ye. N. Bytovyye pechi, kaminy i vodonagrevateli [Household stoves, fireplaces and water heaters], Kiev : Stroyizdat, 1985, 368 p. (Rus.)

Zakharenko-Berezyanskaya Yu. A. Ukrainskiy rynok kondensatsionnykh kotlov. Tendentsii i perspektivy. [Ukrainian market of condensing boilers. Trends and prospects], SОК, 2005, (9), pp. 10–16. (Rus.)

Barabash V.P. Energeticheskaya effektivnost‘ kondensatsionnykh kotlov [Energy efficiency of condensing boilers], Nova tema, 2012, (2), pp. 55–58. (Rus.)

Directive 2009/125/EC: of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. — [Web resource]. — Access mode: http://eur-lex.europa.eu

Tarabanov M.G. Vlazhnyy vozdukh. [Humid air], Moscow : Avok press, 2004, 42 p. (Rus.)

Humidity calculations and conversions made easy. — [Web resource]. — Access mode: http://www. vaisala.ru/ru/support/HumidityCalculator/Pages /default.aspx.

Gillan L. Maisotsenko cycle for cooling processes, Int. J. on Energy for a Clean Environment (Clean Air), 2008, 9, pp. 47–64.

Jenkins P., Cerza M., Saaid M. Al. Analysis of using the M-cycle Regenerative-Humidification Process on a Gas Turbine, Jenkins Proceedings of ASME Turbo 2014ч GTI, Dusseldorf, Germany, June 16–20, 2014, 9 p.

Guillet R. The humid combustion to protect environment and to save the fuel: the water vapor pump and Maisotsenko cycles examples, Int. J. on Energy for a Clean environment, 2011, 12, pp. 259 –271.

Soroka B.S. Ispol’zovaniye al’ternativnykh gazov s tsel’yu ekonomii prirodnogo gaza pri otoplenii vysokotemperaturnykh agregatov [Use of alternative gases for the purpose of saving natural gas in heating high-temperature aggregates], Vidnovlyuval’na energetika, 2010, (1), pp. 5–17. (Rus.)

Soroka B.S., Korniyenko A.V. Ispol’zovaniye al’ternativnykh gazov s tsel’yu ekonomii prirodnogo gaza pri otoplenii vysokotemperaturnykh agregatov. Chast’ 2. Opredeleniye energeticheskikh kharakteristik al’ternativnikh gazovikh topliv v usloviyakh zameshcheniya prirodnogo gaza [Use of alternative gases to save natural gas when heating high-temperature units. Part 2. Determination of the energy characteristics of alternative gas fuels under conditions of substitution of natural gas], Vidnovlyuval’na energetika, 2011, (4), pp. 62–75. (Rus.)

Anne Giese, Huseyin Yalmaz, Jorg Leicher, Eren Tali. Development of a multi-fuel burner for operation with light oil, natural gas and low calorific value gas, Heat Processing, Nov. 2013, 11, Iss. 4, pp. 49–56.

Karp I.N., Soroka B.S., Dashevckiy L.D., Semernina S.D. Produkty sgoraniya prirodnogo gaza pri vysokikh temperaturakh [Products of combustion of natural gas at high temperatures], Kiev : Tekhnika, 1967, 382 p. (Rus.)

Yavorskiy B.M., Seleznev Yu.A. Spravochnoye rukovodstvo po fizike [Reference manual on physics], Moscow : Nauka, 1989, 576 p. (Rus.)

Stabnikov V. N., Lisyanskiy V. M., Popkov V. D. Protsessy i apparaty pishchevykh proizvodstv Lisyanskiy [Processes and devices of food production], Moscow : Agropromizdat, 1985, 503 p. (Rus.)

Sascha Eppensteiner. Bright annealing technology for higt-alloyed steel strip — a comparison of concepts, Heat Processing, Nov. 2015, 13, Iss. 4, pp. 45–50.

Guide to Meteorological Instruments and Methods of Observation. — [Online resource]. — Access mode: https://www.wmo.int/pages/prog/gcos /documents/ gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf

Sosnin Yu. P. Kontaktnyye vodonagrevateli [Contact water heaters], Moscow : Stroyizdat, 1974, 359 p. (Rus.)

Ahmad Al-Halbouni, Anne Giese, Jord Leicher, Klaus Gorner, Dieter Schillingmann, Hartmut Schillingmann, Christian Huwelmann, Burner system using entrained hot pypolysis gas from biomass, Heat Processing, Nov. 2015, 13, Iss. 4, pp. 69–74.

Bondarenko B. I., Soroka B. S., Bezugliy V. K. Mezhfaznyy uglerodoobmen: termodinamika i protsessy perenosa [Interphase carbon exchange: thermodynamics and transport processes], Kiev : Naukova dumka, 2013, 209 p. (Rus.)

Flue gas dew point temperatures. — [Online resource]. — Access mode: http://www.engineeringtoolbox.com/dew-point-flue-gases-d_1583.html

Ber G. D. Tekhnicheskaya termodinamika [Technical thermodynamics], Moscow : Mir, 1977p. (Rus.)

Published
2017-03-20
How to Cite
Soroka, B., & Horupa, V. (2017). ANALYSIS OF THE PROCESS OF WATER VAPOR CONDENSATION WITHIN GAS ATMOSPHERES AND COMBUSTION PRODUCTS. Energy Technologies & Resource Saving, (1), 3-18. https://doi.org/10.33070/etars.1.2017.01

Most read articles by the same author(s)