• S.V. Boichenko Rzeszow University of Technology, Rzeszow, Poland
  • A.V. Yakovlieva Institute of Environmental Safety of National Aviation University, Kyiv
  • O.V. Gryshchenko Institute of Environmental Safety of National Aviation University, Kyiv
  • A.M. Zinchuk Institute of Environmental Safety of National Aviation University, Kyiv
Keywords: energy resources, aviation fuel, emissions, biomass, biofuel, microalgae, sorghum oil, camelina oil, jatropha oil


The work is devoted to the overview of prospects of development and implementation of alternative motor fuels from various types of biomass. The article outlines problems of modern transport that is connected to limitation of conventional energy resources used for fuels production. Main environmental problems connected with the use of conventional aviation fuels are determined. Modern trends for transition from conventional aviation fuels to alternative ones are presented. The article gives versatile analysis of well-developed types of biomass for biofuels production and also perspective types, which may be sufficiently used in the near future. The main properties of oil plants used for biofuels production are described, as well as advantages of biofuels use from considered types of biomass. Bibl. 26, Fig. 1, Tab. 4.

Author Biographies

S.V. Boichenko, Rzeszow University of Technology, Rzeszow, Poland

Doctor of Technical Sciences, Professor

A.V. Yakovlieva, Institute of Environmental Safety of National Aviation University, Kyiv

Candidate of Technical Sciences

O.V. Gryshchenko, Institute of Environmental Safety of National Aviation University, Kyiv

PhD Student


Boichenko S., Iakovlieva A., 2012. Prospects of biofuels introduction into aviation. Proceedings of 15th Сonf. for Lithuania Junior researchers «Science — future of lithuania. Transport engineering and management», 4 May 2012, Vilnius, Lithuania, 90–94.

Walker D.A., 2009. Biofuels, facts, fantasy, and feasibility. J. Appl. Phycol. 21:509–517.

Iakovlieva, A., Boichenko, S., Vovk, O., 2013. Overview of innovative technologies for aviation fuels production Journal of Chemistry and Chemical Technology, 3:305–312. — http://www.scopus. com/inward/record.url?eid=2-s2.0-84884710384& partnerID=MN8TOARS

Varfolomieiev S., Yefimenko Ye., Krylova L., 2010. Biotopliva. Uspehi khimii, 6:544–564 (Rus.).

Nazarenko L. 2012. Biotoplivo: istoriya i klasifikatsiya vidov biotopliva. Vestnik MGPU. Ser. Yestestvennyie nauki, 2(10):16–32 (Rus.).

Atsumi S., Hanai Т., Liao J.C., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451:86–89.

Wijffels R.H., Barbosa M.J., 2010. An outlook on microalgal biofuels. Science. 379:796–799.

Schenk P.M., Thomas-Hall S.R., Stephens Е., 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research. 1:20–43.

Semenova Ye., Buyankin V., Tarasov A., 2007. Maslichnyi ryzhyk: biologiya, technologiya, effektivnost. Volgograd : Izdatelstvo VolGU, 82 p. (Rus.).

Nikolaieva N., Stepycheva N., Kozlov V., 2005. Izmeneniye fiziko-khimicheskih characteristik rapsovogo masla v zavisimosti ot srokov vyzrevaniya semian I agrotechnicheskih faktorov v usloviyah nechernozemya. Khimiya rastitelnogo sirya. 2:12–16 (Rus.).

Abdullah B. M., Yusop R. M., Salimon J., Yousif E., Salih N., 2013. Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering.12:893–896.

Mutegi E., Sagnard F., Muraya M., Kanyenji B., Rono B., Mwongera C., Marangu Ch., Kamau J., Parzies H., de Villiers S., Semagn K., Traorй P., Labuschagne M., 2010. Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genetic Resources and Crop Evolution. 2:243–253.

Petcu A., Carlanescu R., Berbente C., 2014. Straight and Blended Camelina Oil Properties. Recent Advances in Mechanical Engineering. 4:160–167.

Kumar V., Kant P., 2013. Study of Physical and Chemical Properties of Biodiesel from Sorghum Oil. Research Journal of Chemical Sciences. 9:64–68.

Giakoumis E. G., 2013. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy. 50:858–878.

Benemann J., 2014. Microalgae biofuels: a brief introduction. — biofuels_introduction.pdf.

Chisti Y., 2007. Biodisel from microalgae. Biotechnology Advances. 25:294–306.

Weyer K.M., Bush D.R., 2010. Theoretical Maximum Algal Oil Production. BioEnergy Research. 2:204–213.

Moisieiev I., Tarasov V., Trusov L., 2009. Evolutsiya bioenergetiki. Vremia vodoroslei. The Chemical Journal. 4:24–29 (Rus.).

Rosenberg J.N., Oyler G.A., 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19:430–436.

Hramenkov S., Kozlov M. et al. 2011. Resurs osobogo naznacheniya. Ispolzovanie potentsiala ocheshchennoi vody gorodov dlya proizvodstva biotopliv. Voda Magazine. 41:18–22.

Li H., Opgenorth Р.Н., 2012. Integrated electromicrobial conversion of CO2 to higher alcohols Science. 335:1596–1599. 23. Atsumi S., Wu T. Y., Eckl E.M., 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85:651–657.

Bokinsky G., Peralta-Yahya Р.Р., 2011. Synthesis of three advanced biofuels from ionic liquid- pretreated switchgrass using engineered Escherichia coli. PNAS. 50:19949–19954.

Hemme C.L., Mouttaki Н., 2010. Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J. Bacteriol. 24:6494–6496.

Blankenship R.E., Tiede D.M., 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 332:805–809.

How to Cite
Boichenko, S., Yakovlieva, A., Gryshchenko, O., & Zinchuk, A. (2018). PROSPECTS OF USING DIFFERENT GENERATIONS BIOFUELS FOR MINIMIZING IMPACT OF MODERN AVIATION ON ENVIRONMENT. Energy Technologies & Resource Saving, (1), 10-20.