Keywords: municipal solid waste, waste-to-energy, incineration, furnaces, classification, constructions


The purpose of the research was to carry out a critical analysis of the structural and technological design of the process of incineration of municipal solid waste» (MSW). Data on the volume of solid waste generation in the world, Ukraine and Kyiv are given, the need to improve ways of effective solid waste management, in particular their disposal, is shown. A classification of furnaces and furnaces for solid waste burning has been developed. Designs of the specified technological equipment were analyzed depending on the power (productivity), the nature of the MSW incineration process over time, the possibility of movement in space, as well as the mechanism of the incineration process. A critical review of the most common designs of furnaces and furnaces, including layer, rotary, fluidized bed, cyclone, shaft, with a liquid melt bath, as well as floor furnaces and furnaces, is performed. A critical review of the most common designs of furnaces and furnaces, including layer, rotary, fluidized bed, cyclone, shaft, with a liquid melt bath, as well as floor furnaces and furnaces, is performed. This review is primarily based on a critical analysis of scientific and technical sources of information and, above all, patent information of the leading countries of the world, since it is the patent documentation that provides information on innovative developments in the relevant field of engineering and technology. Analysis of the current state and prospects for the use of furnaces and furnaces for MSW incineration shows that the appropriate technological equipment for MSW incineration, as one of the simplest and most effective for obtaining thermal and/or electrical energy and disposing of waste, will be used for solid waste processing for a long time to come. The main efforts are aimed at creating high-performance universal energy-efficient equipment, characterized by low material consumption, ease of maintenance and low negative impact on the environment and human health. Bibl. 62, Fig. 17.


Download data is not yet available.

Author Biography

I.O. Mikulionok, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv

Doctor of Technical Sciences, Professor


Shah A.V., Srivastava V.K., Mohanty S.S., Varjani S. Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. Journal of Environmental Chemical Engineering. 2021. 9. Article 105717. 9 p. doi: 10.1016/j.jece.2021.105717.

Kundariya N., Mohanty S.S., Varjani S., Ngo H.H., Wong J.W.C., Taherzadeh M.J., Chang J.-S., Ngo H.Y., Kim S.-H., Bui X.-T. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology. 2021. 342. Article 125982. 11 p. doi: 10.1016/j.biortech.2021.125982.

Vyas S., Prajapati P., Shah A.V., Varjani S. Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Science of the Total Environment. 2022. 814. Article 152802. 10 p. doi: 10.1016/j.scitotenv.2021.152802.

Khan S., Anjum R., Raza S.T., Bazai N.A., Ihtisham M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere. 2022. 288 (1). Article 132403. 12 p. doi: 10.1016/j.chemosphere.2021.132403.

Roy H., Alam S.R., Bin-Masud R., Prantika T.R., Pervez M.N., Islam M.S., Naddeo V. A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustainability. 2022. 14. Article 10265. 25 p. doi: 10.3390/su141610265.

Chen D. M.-C., Bodirsky B.L., Krueger T., Mishra A., Popp A. The world’s growing municipal solid waste: Trends and impacts. Environmental Research Letters. 2020. 15. Article 074021. 12 p. doi: 10.1088/1748-9326/ab8659.

Tsui T.-H., Wong J.W.C. A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy. 2019. 1, pp. 151–167. doi: 10.1007/s42768-019-00013-z.

Valavanidis A. Global Municipal Solid Waste (MSW) in Crisis. Two billion tonnes of MSW every year, a worrying worldwide environmental problem. —

Nanda S., Berruti F. Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters. 2020. 19 (2). pp. 1433–1456. doi: 10.1007/s10311-020-01100-y.

Sigal O.I., Pavliuk N.Yu. [Current state and prospects of solid household waste management in Kyiv]. Teplofizika ta teploenergetika. [Thermal physics and thermal energy]. 2020. 42 (3). pp. 84–92. doi: 10.31472/ttpe.3.2020.10. (Ukr.)

[On the approval of the National strategy for waste management in Ukraine until 2030: Approved by the order of the Cabinet of Ministers of Ukraine dated November 8, 2017, No. 820-r]. — (Ukr.)

[Ministry of Development of Communities and Territories of Ukraine: State of the field of household waste management in Ukraine for 2021]. — (Ukr.)

Mikulionok I.O. [A state of art and prospects of plastic solid waste management]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2021. No. 2. pp. 52–73. doi: 10.33070/etars.2.2021.05. (Ukr.)

Mikulionok I.O. [A State of Art and Prospects of Used Pneumatic Tires Management (Review)]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2021. No. 3. pp. 63–83. doi: 10.33070/etars.3.2021.06. (Ukr.)

Mikulionok I.O. [A State of Art and Prospects of Handling Used PET Bottles]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2021. No. 4. pp. 45–61. doi: 10.33070/etars.4.2021.05. (Ukr.)

Mikulionok I.O. [A State of Art and Prospects of Handling Glass Waste]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2022. No. 1. pp. 33–50. doi: 10.33070/etars.1.2022.04. (Ukr.)

Mikulionok I.O. [State and Prospects of Handling Metal-Containing Household Waste]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2022. No. 2. pp. 45–61. doi: 10.33070/etars.2.2022.04. (Ukr.)

Mikulionok I.O. [State and Prospects of the Production of Compressed Solid Biofuels]. Energotekhnologii ta resursozberezhennia. [Energy technologies and Resource Saving]. 2022. No. 4. pp. 15–34. doi: 10.33070/etars.4.2022.02. (Ukr.)

Silva de Souza Lima Cano N., Iacovidou E., Rutkowski E.W. Typology of municipal solid waste recycling value chains: A global perspective. Journal of Cleaner Production. 2022. 336. Article 130386. 15 p. doi: 10.1016/j.jclepro.2022.130386.

Balasubramani R., Muthunarayanan V., Arumugam K., Periakaruppan R., Singh A., Chang S.W., Chandran T., Singh G.S., Muniraj S. Treatment of Waste. In: Waste Valorisation: Waste Streams in a Circular Economy / Editors: Carol Sze Ki Lin, Guneet Kaur, Chong Li, Xiaofeng Yang. New York: John Wiley & Sons Ltd. 2021. Ch. 3. pp. 33–49. —

[Thermal Waste Recycling and Treatment: Information and Technical Guide to the Best Available Techniques ITS 9–2020]. Moscow : Biuro NDT, 2016. 226 p. —ИТС-9-2020-v.10-08.12.pdf (Rus.)

Matveiev Yu.B., Geletukha G.G. [Prospects of energy utilization of solid household waste in Ukraine: Analytical note of the Bioenergy Association of Ukraine No. 22 (April 2019)]. 48 p. — (Ukr.)

Karp I.M., Pyanykh K.Ye. [Technological Aspects of Energy Use of Solid Household Waste]. Energotekhnologii i resursozberezheniya. [Energy technologies and Resource Saving]. 2019. No. 3. pp. 27–39. doi: 10.33070/etars.3.2019.03. (Ukr.)

Bereziuk O.V., Lemeshev M.S. [Dynamics of solid household waste incineration methods prevalence in Ukraine]. Visnyk Vinnytskogo politekhnichnogo instytutu. [Bulletin of the Vinnytsia Polytechnic Institute]. 2022. No. 1. pp. 6–10. doi: 10.31649/1997-9266-2022-160-1-6-10. (Ukr.)

[On waste management: Law of Ukraine dated June 20, 2022, No. 2320-IX]. — (Ukr.)

Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Management. 2012. 32 (4). pp. 625–539. doi: 10.1016/j.wasman.2011.09.025.

Chandler A.J., Eighmy T.T., Hjelmar O., Kosson D.S., Sawell S.E., Vehlow J., Sloot van der H.A., Hartlén J. Municipal Solid Waste Incinerator Residues. Amsterdam : Elsevier Science B.V., 1997. 974 p. —

Nidoni P.G. Incineration Process for Solid Waste Management and Effective Utilization of by Products. International Research Journal of Engineering and Technology. 2017. 4 (12). pp. 378–382. —

Ignatowitz E. Chemietechnik. Haan-Gruiten : Verlag Europa-Lehrmittel. 2011. 608 p. (DE)

Sidenko P.M. [Grinding in the chemical industry]. Moscow : Khimiia, 1977. 368 p. (Rus.)

Andreyev S.Ye., Perov V.A., Zverevich V.V. [Crushing, grinding and screening of minerals]. Moscow : Nedra, 1980. 415 p. (Rus.)

Vandecasteele C., Wauters G., Arickx S., Jaspers M., van Gerven T. Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case. Waste Management. 2007. 27. pp. 1366–1375. doi: 10.1016/j.wasman.2006.08.005.

Sevostianov I.V. [Research of equipment for incineration of food industry waste]. Naukovi pratsi VNTU. [Scientific works of VNTU]. 2015. No. 3. 9 p. — (Ukr.)

Yang Y.B., Ryu C., Goodfellow J., Nasserzadeh Sharifi V., Swithenbank J. Modelling Waste Combustion in Grate Furnaces. Process Safety and Environmental Protection. 2004. 82 (3). pp. 208–222. doi: 10.1205/095758204323065975.

Neuwahl F., Cusano G., Benavides J.G., Holbrook S., Roudier S. Best Available Techniques (BAT) Reference Document for Waste Incineration. Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and Control. Luxembourg: Publications Office of the European Union, 2019. 764 p. —

Al-Salem S.M. Energy Production From Plastic Solid Waste (PSW). In: Plastics to Energy. Fuel, Chemicals, and Sustainability Implications; Edited by S.M. Al-Salem. Oxford, Cambridge: Elsevier Inc., 2019. pp. 45–64. doi: 10.1016/B978-0-12-813140-4.00003-0.

Kira M., Doi T., Tsuneizumi S., Takuma M., Kitta T. Development of New Stoker Incinerator for Municipal Solid Wastes Using Oxygen Enrichment. Mitsubishi Heavy Industries, Ltd. Technical Review. 2001. 38 (2). pp. 78–81. —

Olsson S. Environmental assessment of municipal solid waste incinerator bottom ash in road constructions. Stockholm, 2005. 34 p. —

Poranek N., Łaźniewska-Piekarczyk B., Czajkowski A., Pikoń K. Possibilities of Management of Fly Ash from Municipal Solid Waste Incineration Plant in Building Industry in the Circular Economy. IOP Conf. Series: Materials Science and Engineering. 2021. 1203 (3). Article 032087. 10 p. doi: 10.1088/1757-899X/1203/3/032087.

Zhang Y., Ma Z., Fang Z., Qian Y., Zhong P., Yan J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Disposal & Sustainable Energy. 2020. 2. 15 p. doi: 10.1007/s42768-020-00033-0.

Xiang-Guo Li, Yang Lv, Bao-Guo Ma, Quan-Bin Chen, Xiao-Bo Yin, Shou-Wei Jian. Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production. 2012. 32. pp. 96–100. doi: 10.1016/j.jclepro.2012.03.038.

Rehman A.U., Lee S.-M., Kim J.-H. Use of municipal solid waste incineration ash in 3D printable concrete. Process Safety and Environmental Protection. 2020. 142. pp. 219–228. doi: 10.1016/j.psep.2020.06.018.

Li J. Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice. Buildings. 2021. 11 (11). Article 495. doi: 10.3390/buildings11110495.

Niu M., Zhang P., Guo J., Wang J. Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete. Gels. 2022. 8 (6). Article 341. doi: 10.3390/gels8060341.

Dobronogov V.G., Mikulionok I.O. [Application of corrosion-resistant, heat-resistant, heat-lasting steels and alloys in chemical engineering and apparatus construction]. Kyiv : NTUU “KPI”, 2011. 264 p. — (Ukr.)

Qu Z., Zhong R., Wang L., Zhao W., Tian X., Wang H. High Temperature Corrosion Protection of Heating Surface Metals of Waste Incineration Power Generation Boilers: A Review. Journal of Physics: Conference Series. 2020. 1649, Article 012031. doi: 10.1088/1742-6596/1649/1/012031.

Jiang X., Li Y., Yan J. Hazardous waste incineration in a rotary kiln: a review. Waste Disposal & Sustainable Energy. 2019. 1. pp. 3–37. doi: 10.1007/s42768-019-00001-3.

Saxena S.C., Jotshi C.K. Fluidized-bed incineration of waste materials. Progress in Energy and Combustion Science. 1994. 20 (4). pp 281–324. doi: 10.1016/0360-1285(94)90012-4.

Tang Z., Chen X., Liu D., Zhuang Y., Ye M., Sheng H., Xu S. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator. Journal of Environmental Sciences. 2016. 48. pp. 169–178. doi: 10.1016/j.jes.2016.02.017.

Mikulionok I.O. Plate-Type Gas Distribution Grids for Fluidized Bed Apparatuses (Survey of Patents). Chemical and Petroleum Engineering. 2021. 57 (1–2). pp. 168–175. doi: 10.1007/s10556-021-00911-2.

Mikulionok I.O. Classification of Gas-Distribution Grids of Fluidized Bed Apparatuses (Survey of Patents). Chemical and Petroleum Engineering. 2021. 57 (3–4). pp. 346–353. doi: 10.1007/s10556-021-00927-8.

Mikulenok I.O. Designs of bubble caps of the contact plates of mass-exchange columns (Review of patents). Chemical and Petroleum Engineering. 2018. 54 (5–6). pp. 410–417. doi: 10.1007/s10556-018-0495-y.

Mikulionok I.O. Design of the valves of the contact plates of mass-transfer columns (Survey of patents). Chemical and Petroleum Engineering. 2020. 55 (9–10). pp. 762–771. doi: 10.1007/s10556-021-00881-5.

Mikulionok I.O. Classification of the designs of the stamped contact plates of mass-exchange columns (survey of patents). Chemical and Petroleum Engineering. 2020. 55 (9–10). pp. 847–855. doi: 10.1007/s10556-020-00703-0.

Sakai S., Hiraoka M. Municipal solid waste incinerator residue recycling by thermal processes. Waste Management. 2000. 20 (2–3). pp. 249–258. doi: 10.1016/S0956-053X(99)00315-3.

Zhao P., Ni G., Jiang Y., Chen L., Chen M., Meng Y. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials. 2010. 181 (1–3). pp. 580–585. doi: 10.1016/j.jhazmat.2010.05.052.

Mukherjee C., Denney J., Mbonimpa E.G., Slagley J., Bhowmik R. A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews. 2020. 119. Article 109512. 17 p. doi: 10.1016/j.rser.2019.109512.

Zhang Y., Wang L., Chen L., Ma B., Zhang Y., Ni W., Tsang D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials. 2021. 411. Article 125132. 19 p. doi: 10.1016/j.jhazmat.2021.125132.

Li M., Xiang J., Hu S., Sun L.-S., Su S., Li P.-S., Sun X.-X. Characterization of solid residues from municipal solid waste incinerator. Fuel. 2004. 83 (10). P. 1397–1405. doi: 10.1016/j.fuel.2004.01.005.

Dong J., Chi Y., Tang Y., Ni M., Nzihou A., Weiss-Hortala E., Huang Q. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification and incineration. Energy & Fuels. 2015. 29 (11). pp. 7516–7525. doi: 10.1021/acs.energyfuels.5b01918.

Kanhar A.H., Chen S., Wang F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies. 2020. 13 (24). Article 6681. 35 p. doi: 10.3390/en13246681.

Xue Y., Liu X. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review. Chemical Engineering Journal. 2021. 420 (3). Article 130349. 10 p. doi: 10.1016/j.cej.2021.130349.

How to Cite
Mikulionok, I. (2023). MUNICIPAL SOLID WASTE INCINERATION FURNACES (REVIEW). Energy Technologies & Resource Saving, 74(1), 59-80.