THE RELATIONSHIP BETWEEN THE STATE OF AGGREGATIVE EQUILIBRIUM, THE RHEOLOGY OF GRAPHITE-CONTAINING COMPOSITIONS AND THE ELECTROPHYSICAL PROPERTIES OF CONDUCTIVE COATINGS BASED ON THEM

Keywords: graphite-containing water compositions, aggregative stability, ϛ-potential, rheological properties, conductive coatings, electrophysical properties

Abstract

The influence of the chemical nature and concentration of the stabilizers (surfactants and water-soluble polymer) on the aggregative stability and rheological behavior of graphite-containing compositions, as well as on the quality and electrophysical properties of conductive coatings based on them, was studied. It is shown that the state of aggregative equilibrium in graphite-containing composite systems strongly affects the rheology of the compositions and the electrophysical properties of the corresponding conductive coatings. Established correlations between the state of aggregative equilibrium and the rheological and electrosurface parameters of aqueous graphite-containing compositions make it possible to purposefully regulate the structure and properties of conductive coatings based on them. Bibl. 23, Fig. 6, Tab. 1.

Downloads

Download data is not yet available.

Author Biography

V.N. Moraru, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Chemical Science

References

Napolnytely dlia polymernikh kompozytsyonnikh materyalov : Spravochnoe posobye. Perevod s angl. pod red. P.H.Babaevskoho. Moscow : Khymyia, 1981. 736 p. (Rus.)

Roldughin V.I., Vysotskii V.V. Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Progress in Organic Coatings. 2000. 39 (2–4). pp. 81–100.

Jäger K-M., McQueen D.H. Fractal agglomerates and electrical conductivity in carbon black polymer composites. Polymer. 2001. 42 (23). pp. 9575–9581.

Ezquerra T.A., Connor M.T., Roy S., Kulescza M., Fernandes-Nascimento J., Baltá-Calleja F.J. Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Composites Science and Technology. 2001. 61 (6). pp. 903–909.

Read J., Foster D., Wolfenstine J., Behl W. SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources. 2001. 96. pp. 277–281.

Charles B. Duke, Jaan Noolandi, and Tracy Thieret. The surface science of xerography. Surface Science. 2002. 500 (1–3). pp. 1005–1023.

Raos G., Allegra G., Assecondi L., Croci C. Rigid filler particles in a rubber matrix: effective force constants by multipolar expansion. Computational and Theoretical Polymer Science. 2000. 10. pp. 149–157.

Matilde Luque, Angel Rios, Miguel Valcarcel. A poly(vinyl choloride) graphite composite electrode for flow injection amperometric determination of antioxidants. Analytica Chimica Acta. 1999. 395. pp. 217–223.

Zhang W., Dehghani-Sanij A.A., Blackburn R.S. Carbon based conductive polymer composites. J. Mater. Sci. 2007. No. 42. pp. 3408–3418.

Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009. No. 69. pp. 1486–1498.

Seo M.K., Park S.J. Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem. Phys. Letter. 2004. No. 395. pp. 44-48.

Moraru V.N. Primenenie nanozhidkostej dlya ekstrennogo avarijnogo ohlazhdeniya energeticheskogo oborudovaniya. Energotehnologii i resursosberezhenie. [Energy Technologies and Resource Saving]. 2016, No. 4. pp. 14–23. (Rus.)

Kravec V.Yu., Moraru V.N., Gurov D.I. Vpliv riznih faktoriv na teploperedavalni harakteristiki miniatyurnih dvofaznih termosifoniv z nanoridinami. Energotehnologii i resursosberezhennja. [Energy Technologies and Resource Saving]. 2022 No. 4. pp. 50–61. (Ukr.)

Moraru V.N., Lebovka N.I., Shevchenko D.G. Structural Transitions in Aqueous Suspensions of Natural Graphite. Colloids & Surfaces. A: Physicochem. Eng. Aspects. 2004. 242 (1). pp. 181–187.

Zheltonozhskaya T.B., Pop G.S., Eremenko B.V., Uskov I.A. Issledovanie svojstv i konformacij v rastvore sopolimera stirola s N,N-dietilaminopropilmonoamidom maleinovoj kisloty. Vysokomolekulyarnye soedineniya. 1981. A23 (11). pp. 2425–2435. (Rus.)

Bibik E.E. Reologija dispersnyh sistem. Leningrad : Himija, 1981. 172 p. (Rus.)

Duhin S.S., Deryagin B.V. Elektroforez. Moscow : Nauka, 1976. 327 p. (Rus.)

Moraru V.N., Ovcharenko F.D., Kobylynskaia L.Y. Adsorbtsyia oksyetylyrovannykh neyonnikh PAV y ee vlyianye na stabylnost vodnikh dyspersyi grafyta. Kolloyd. zhurn. 1984. 46 (6). pp. 1148–1153. (Rus.).

Moraru V.N., Moraru D.V., Ovcharenko F.D. Adsorbtsyia polymetakrylovoi kysloty y ee vlyianye na ustoichyvost y elektropoverkhnostnye svoistva dyspersyi grafyta. 1. Vlyianye molekuliarnoi massy. Kolloyd. zhurn. 1998. 60 (4). pp. 512–519. (Rus.)

Moraru V.N., Ovcharenko F.D., Moraru D.V., Yaremko Z.M. Adsorbtsyia polymetakrylovoi kysloty y ee vlyianye na ustoichyvost y elektropoverkhnostnye svoistva dyspersyi grafyta. 2. Vlyianye fonovogo electrolyta. Kolloyd. Zhurn. 1998. 60 (4). pp. 520–526. (Rus.)

Moraru V.N., Ovcharenko F.D., Moraru D.V. Adsorbtsyia polymetakrylovoi kysloty y ee vlyianye na ustoichyvost y elektropoverkhnostnye svoistva dyspersyi grafyta. 3. Vlyianye pH sredy. Kolloyd. zhurn. 1998. 60 (4). pp. 527–532. (Rus.)

Nepper D. Stabylyzatsyia kolloydnikh dyspersyi polymeramy. Moscow : Myr, 1986. 487 p. (Rus.)

Tadros Th. F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Advances in Colloid and Interface Science. 1996. 68. pp. 97–200.

Published
2023-03-20
How to Cite
Moraru, V. (2023). THE RELATIONSHIP BETWEEN THE STATE OF AGGREGATIVE EQUILIBRIUM, THE RHEOLOGY OF GRAPHITE-CONTAINING COMPOSITIONS AND THE ELECTROPHYSICAL PROPERTIES OF CONDUCTIVE COATINGS BASED ON THEM. Energy Technologies & Resource Saving, 74(1), 48-58. https://doi.org/10.33070/etars.1.2023.05
Section
Raw material processing and resource saving