HEAT ACCUMULATION WITH MONTMORILLONITE/CARNAUBA WAX NANOMATERIALS

  • S.Ya. Brychka The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: energy, storage, nanoclay, wax, phase transition material

Abstract

A thermal energy latent accumulation using phase change materials attracts interest in energy storage under an isothermal condition. An introduction of the green chemistry principles in the creation of form-stable phase change materials occupies its justified technological niche. Information about the behavior of the molecules of materials obtained using physicochemical methods including NMR spectroscopy can be used to optimize the choice of material. The materials are required longer general thermal, chemical stability and according to the thermal cycling test for the extended performance of a system. The phase changr materials with a phase transition were obtained from melts by mixing nanosized montmorillonite with carnauba wax. As a result, a number of wax/nanomaterials solid samples were prepared by grinding with a mass ratio of 70/30, 60/40 and 50/50 %. The created composite materials had the latent heat, respectively 115.5 J g for 70/30, 107.8 J/g for 60/40 and 91.4 J/g for 50/50 samples. There is a correlation between the wax content in the PCMs 70, 60 and 50 % and the percentage of heat accumulation relative to pure wax, namely 61, 57 and 48 %. The black-grey material obtained makes it possible to reduce the time intervals of the cycle of accumulation and return of heat. The profiles of heat absorption curves for all materials break off at 100 °C and the cooling curves have two regions of heat loss. The area under the DSC curves during the first heating of the powders is more on 42 % of whole pieces of PСMs. The PCMs (50/50) 13С resonances were at around 20-40 ppm, which are the typical chemical shifts for the methylene carbons of the aliphatic region, at 62.82, 63.46 ppm for the oxygenated species, at 114.05, 116.11 ppm for the alkenes at 130.68, 133.44 ppm for the aromatic rings and at 172.92, 178.72 ppm for the carboxylic groups. 27Al spectrum has the maximum at 2.90 ppm of octahedral aluminium and at 26.53 ppm may belong to a distorted tetrahedral site. Bibl. 43, Fig. 3.

Author Biography

S.Ya. Brychka, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Doctor of Technical Scienses

References

Okogeri O., Stathopoulos N.V. What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. International Journal of Thermofluids. 2021. Vol. 10. P. 100081. (Eng.)

Brichka S.Ya. Obtaining and properties of nanoscale solid-state heat storage with carnauba wax. Energy Technologies and Resource Saving. 2021. №. 4. P. 36-44. (Rus.)

Jouhara H., Góra A.Z., Khordehgah N., Ahmad D., Lipinski T. Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids. 2020. Vol. 5–6. P. 100039. (Eng.)

Luo Y., Xiong S., Huang J., Zhang F., Li C., Min Y., Peng R., Liu Y. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells. 2021. Vol. 231. P. 111300. (Eng.)

Lv P., Liu C., Rao Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renewable and Sustainable Energy Reviews. 2017. Vol. 68. P. 707–726. (Eng.)

Wang C., Liang W., Tang Z., Jia J., Liu F., Yang Y., Sun H., Zhaoqi Zhu Z., Li A. Enhanced light-thermal conversion efficiency of mixed clay base phase change composites for thermal energy storage. Applied Clay Science. 2020. Vol. 189. P. 105535. (Eng.)

Takudzwa A., Hassan M.M.A. Ookawara S., Hassan H. An overview of the preparation and characteristics of phase change materials with nanomaterials. Journal of Energy Storage. 2022. Vol. 51. P. 104353. (Eng.)

Thanakkasaranee S., Seo J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol -based composite phase change materials International. Journal of Heat and Mass Transfer. 2019. Vol. 132. P. 154–161. (Eng.)

Zhou Y., Wang X., Liu X., Sheng D., Ji F., Dong L., Xu S., Wu H., Yang Y. Polyurethane-based solid-solid phase change materials with halloysite nanotubes hybrid graphene aerogels for efficient light- and electro-thermal conversion and storage. Carbon. 2019. Vol. 142. P. 558–566. (Eng.)

Li M., Wu Z., Kao H., Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Conversion and Management. 2011. Vol. 52. P. 3275–3281. (Eng.)

Fang X., Zhang Z., Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management. 2008. Vol. 49. P. 718–723. (Eng.)

Chen C., Liu X., Liu W., Ma M. A comparative study of myristic acid/bentonite and myristic acid/Eudragit L100 form stable phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells. 2014. Vol. 127. P. 14–20. (Eng.)

Gao N., Tang T., Xiang H., Zhang W., Li Y., Yang C., Xia T., Liu X. Preparation and structure-properties of crosslinking organic montmorillonite/polyurethane as solid-solid phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells. 2022. Vol. 244. P. 111831. (Eng.)

Ai H., Lv L., Chen T., Zhang Y., Dong L., Song S. An eco-friendly and facile montmorillonite nanosheets aerogel based phase change materials for efficient solar-to-thermal energy conversion. Energy Conversion and Management. 2022. Vol. 253. P. 115172. (Eng.)

Jin W., Jiang L., Chen L., Gu Y., Guo M., Han L., Ben X., Yuan H., Lin Z. Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings. Construction and Building Materials. 2021. Vol. 301. P. 124102. (Eng.)

Li M., Guo Q., Nutt S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Solar Energy. 2017. Vol. 146. P. 1–7. (Eng.)

Jeong S-G., Chang S.J., We S., Kim S. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Solar Energy Materials and Solar Cells. 2015. Vol. 139. P. 65–70. (Eng.)

Yi H., Ai Z., Zhao Y., Zhang X., Song S. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage. Solar Energy Materials and Solar Cells. 2020. Vol. 204. P. 110233. (Eng.)

Sarier N., Onder E., Ozay S., Ozkilic Y. Preparation of phase change material–montmorillonite composites suitable for thermal energy storage. Thermochimica Acta. 2011. Vol. 524. P. 39–46. (Eng.)

Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy. 2005. Vol. 79. P. 648–654. (Eng.)

Leong K.Y., Hasbi S., Ahmad K.Z.K.., Jali N.M., Ong H.C., Din M.F.M. Thermal properties evaluation of paraffin wax enhanced with carbon nanotubes as latent heat thermal energy storage. Journal of Energy Storage. 2022. Vol. 52, Part C. P. 105027. (Eng.)

Cao X., Li C., He G., Tong Y., Yang Z. Composite phase change materials of ultra-high molecular weight polyethylene/paraffin wax/carbon nanotubes with high performance and excellent shape stability for energy storage. Journal of Energy Storage. 2021. Vol. 44. P. 103460. (Eng.)

Prabhu B., Arasu V.A. Stability analysis of TiO2–Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems Renewable Energy. 2020. Vol. 152. P. 358-367. (Eng.)

Kumar K., Sharma K., Verma S., Upadhyay N. Experimental Investigation of Graphene-Paraffin Wax Nanocomposites. Thermal Energy Storage. 2019. Vol. 18. P. 5158-5163. (Eng.)

Mohamed N.H., Soliman F.S., Maghraby H., Moustfa Y.M. Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews. 2017. Vol. 70. P. 1052-1058. (Eng.)

Reyes A., Henríquez-Vargas L., Rivera J., Sepúlveda F. Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renewable Energy. 2017. Vol. 101. P. 225-235. (Eng.)

Mhike W. Focke W.W., Mofokeng J.P., Luyt A.S. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite. Thermochimica Acta. 2012. Vol. 527. P. 75-82. (Eng.)

Tangsiriratana E., Skolpap W., Patterson R.J., Sriprapha K. Thermal properties and behavior of microencapsulated sugarcane wax phase change material. Helion. 2019. Vol. 5. P. e02184. (Eng.)

Murthy B.V.R. Thanaiah K., Gumtapure V. Experimental investigation of shellac wax as potential bio-phase change material for medium temperature solar thermal energy storage applications. Solar Energy. 2022. Vol. 231. P. 1002-1014.

Seong J.Y., Seunghwan J.C., Kim W.S. Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes. Chemosphere. 2019. Vol. 235. P. 626-635. (Eng.)

Salgueiro T., Samagaio A., Gonçalves M., Figueiredo A., Labrincha J., Silva L. Incorporation of phase change materials in an expanded clay containing mortar for indoor thermal regulation of buildings. Journal of Energy Storage. 2021. Vol. 36. P. 102385. (Eng.)

Ben Z., Amine Z., Ibtissam T., Omar L., Moulay A., Alaoui A.H. Thermal performance of clay-straw wall incorporating phase change materials in Errachidia city (South Eastern Morocco): A simulation approach. Case Studies in Construction Materials. 2021. Vol. 15. P. e00786. (Eng.)

Kurnia J.C., Haryoko L.A.F., Taufiqurrahman I., Chen L., Jiang L., Sasmito A.P. Optimization of an innovative hybrid thermal energy storage with phase change material (PCM) wall insulator utilizing Taguchi method. Journal of Energy Storage. 2022. Vol. 49. P. 104067. (Eng.)

Tyagi V.V., Chopra K., Sharma R.K., Pandey A.K., Tyagi S.K. Ahmad M.S., Sarı A., Kothari R. A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability. Solar Energy Materials and Solar Cells. 2022. Vol. 234. P. 111392. (Eng.)

Wu M.Q., Wu S., Cai Y.F., Wang R.Z., Li T.X. Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management. Energy Storage Materials. 2021. Vol. 42. P. 380–417. (Eng.)

Zhao Y., Zhang X., Hua W. Review of preparation technologies of organic composite phase change materials in energy storage. Journal of Molecular Liquids. 2021. Vol. 336. P. 115923. (Eng.)

Sadeghi G. Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials. 2022. Vol. 46. P. 192–222. (Eng.)

Kameda T., Tamada Y. Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk. International Journal of Biological Macromolecules. 2009. Vol. 44. P. 64–69. (Eng.)

Speight R.J., Rourke J.P., Wong A., Barrow N.S., Ellis P.R., Bishop P.T., Smith M.E. 1H and 13C solution- and solid-state NMR investigation into wax products from the Fischer–Tropsch process. Solid State Nuclear Magnetic Resonance. 2011. Vol. 39. P. 58–64. (Eng.)

Dubey P., Sharma P., Kumar V. Structural profiling of wax biopolymer from Pinus roxburghii Sarg. needles using spectroscopic methods. International Journal of Biological Macromolecules. 2017. Vol. 104. P. 261–273. (Eng.)

Takahashi T., Ohkubo T., Suzuki K., Ikeda Y. High resolution solid-state NMR studies on dissolution and alteration of Na-montmorillonite under highly alkaline conditions. Microporous and Mesoporous Materials. 2007. Vol. 106. P. 284–297. (Eng.)

Gougeon R.D., Reinholdt M., Delmotte L., Miehe-Brendle J., Jeander P. Solid-state NMR investigation on the interactions between a synthetic montmorillonite and two homopolypeptides. Solid State Nuclear Magnetic Resonance. 2006. Vol. 29. P. 322–329. (Eng.)

Ji H., Sellan D.P., Pettes M.T., Kong X., Ji J., Shi L. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci. 2014. Vol. 7. P. 1186–1192. (Eng.)

http://www.insilico.co.kr; https://www.pcmproducts.net; https://www.tglobalcorp.com

Published
2022-09-20
How to Cite
Brychka, S. (2022). HEAT ACCUMULATION WITH MONTMORILLONITE/CARNAUBA WAX NANOMATERIALS. Energy Technologies & Resource Saving, (3), 58-69. https://doi.org/10.33070/etars.3.2022.04
Section
Energy saving technologies