Keywords: household metal waste, aluminum cans, electrical and electronic equipment, electric batteries, waste management, recycling


The basic data on the volume of the formation of household (municipal) metal-containing waste, in particular, aluminum cans for drinks, cans, waste electrical and electronic equipment, electrical power sources (batteries and galvanic cells), as well as lighting lamps. The main methods of handling the indicated waste are considered and their critical analysis is presented. Particular attention is paid to the recycling and disposal of common waste such as waste electrical and electronic equipment, chemical sources of electrical current, and lighting lamps. Taking into account the rapid growth in the consumption of electrical and electronic products, it is shown that now there is a tendency not so much to improve the methods of disposal of the corresponding waste, but to ensure the production of more durable goods that provide for the possibility of their repair. A gradual transition from the 3R strategy (Reuse, Reduce, Recycle) to the 10R strategy (Refuse, Rethink, Reconsider, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, Recover) is proposed. At the same time, the development of effective technologies for extracting not only traditional iron, aluminum, copper and their alloys from metal-containing household waste is not removed from the agenda, but also more scarce metals, including rare earth and heavy metals, as well as platinum group metals, which will allow significantly reduce the man-made load on the environment. Bibl. 69, Table 1.

Author Biography

I.O. Mikulionok, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

Doctor of Technical Sciences, Professor


Miteva K. (2017). Production of sustainable energy from solid waste by pyrolysis — A review. Recycling and Sustainable Development, 12 (1), pp. 69–77. DOI:

Cui H., Sošić G. (2018). Recycling Common Materials: Effectiveness, Optimal Decisions, and Coordination Mechanisms. European Journal of Operational Research, 274, pp. 1055–1068. DOI:

Mikulionok I.O. (2021). Stan ta perspektyvy povodzhennia z tverdymy polimernymy vidkhodamy. [A state of art and prospects of plastic solid waste management]. Energotokhnologii ta resursozberezhennia, No. 2, pp. 52–73. DOI: (Ukr.)

Mikulionok I.O. (2021). Stan ta perspektyvy povodzhennia z vykorystanymy PET-pliashkamy. [State and prospects of handling used PET bottles]. Energotokhnologii ta resursozberezhennia, No. 4, pp. 52–73. DOI: (Ukr.)

Mikulionok I.O. (2021). Stan ta perspektyvy povodzhennia z pnevmatychnymy shynamy, shcho vtratyly svoi spozhyvchi vlastyvosti (Ogliad). [A state of art and prospects of used pneumatic tires management (Review)]. Energotokhnologii ta resursozberezhennia, No. 3, pp. 63–83. DOI: (Ukr.)

Mikulionok I.O. (2022). Stan ta perspektyvy povodzhennia zi sklianymy vidkhodamy. [State and prospects of glass waste management]. Energotokhnologii ta resursozberezhennia, No. 1, pp. 63–83. DOI: (Ukr.)

Pro skhvalennia Natsionalnoi strategii upravlinnia vadkhodamy v Ukraini do 2030 roku : Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 08.11.2017. [On approval of the National Waste Management Strategy in Ukraine until 2030: approved by the order of the Cabinet of Ministers of Ukraine dated November 8, 2017, No. 820-r.]. — URL: (Accessed November 27, 2021)

Kak zarabatyvat dengi na bankakh : Kto i dlya chego skupayet alyuminiyevyye banki? [How to make money on cans : Who buys aluminum cans and why?]. — (Accessed November 27, 2021)

Klinkov A.S., Belyayev P.S., Odnolko V.G., Sokolov M.V., Makeyev P.V., Shashkov I.V. (2015). Utilizatsiya i pererabotka tvyergykh bytovykh otkhodov. [Disposal and processing of solid household waste]. Tambov : Izdatelstvo FGBOU VPO «TGTU», 188 p. — (Rus.)

GOST 2787–75. Metally chernyye vtorichnyye. Obshchiye takhnicheskiye usloviya. [Ferrous secondary metal. General technical requirements]. Moscow : IPK Izdatelstvo standartov, 2002, 52 p.

GOST R 54564–2011. Lom i otkhody tsvetnykh metallov i splavov. Obshchiye takhnicheskiye usloviya. [Non-ferrous metals and alloys scrap and waste. General specifications]. Moscow : Standartinform, 2013, 59 с.

Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., Wu F. (2020). Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, Article acs.chemrev.9b00535, 44 p. DOI:

GOST R 56828.31–2017. Nailuchsgiye dostupnyye tekhnologii. Resursosberezheniye. Iyerarkhichexkiy poryadok obrashcheniya s otkhodami. [Best available techniques. Resources saving. The hierarchical order of waste treatment]. Moscow : Standartinform, 2017. 24 p. (Rus.)

Mikulionok I.O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsessy ta obladnannia khimichnoi tekhnologii. [Mechanical, Hydromechanical, and Mass-Exchange Processes and Equipment in Chemical Engineering]. Kyiv : NTUU «KPI», 340 p. — (Ukr.)

Мікульонок І.О. (2018). Mekhanichni ta hidromekhanichni protsessy, aparaty i mashiny khimichnoi tekhnologii. [Mechanical and hydromechanical processes, apparatuses and machines of chemical technology]. Kyiv : Igor Sikorsky Kyiv Polytechnic Institute, Vydavnytstvo «Politekhnika», 172 p.

Mikulionok I.O. (2021). Classification of Roll Grinders for Lumpy and Bulk Materials (Survey of Patents). Chemical and Petroleum Engineering, 56 (11–12), pp. 951–957. DOI:

Kishk S.S., ElGamal R.A., ElMasry G.M. (2019). Effectiveness of Recyclable Aluminum Cans in Fabricating an Efficient Solar Collector for Drying Agricultural Products. Renewable Energy, 133(C), pp. 307–316. DOI:

Holzschuh G.G., Dörr D.S., Moraes J.A.R., Garcia S.B. (2020). Metal matrix production : Casting of recycled aluminum cans and incorporation of rice husk ash and magnesium. Journal of Composite Materials, 54 (22), pp. 3229–3241. DOI:

Holzschuh G.G., Moraes J.A.R., Garcia S.B., Zanesco I., Kipper L.M., Cassia Schneide R. (2021). Casting of recycled aluminum, Al + Cu + Mg alloy formation and lamination process of an electric current conductor. Research Square, 21 p. DOI:

Buryakovskaya O.A., Meshkov E.A., Vlaskin M.S., Shkolnokov E.I., Zhuk A.Z. (2017). Utilization of Aluminum Waste with Hydrogen and Heat Generation. IOP Conference Series: Materials Science and Engineering, 250, Article 012007, 5 p. DOI:

Yang H., Zhang H., Peng R., Zhang S., Huang X., Zhao Z. (2019). Highly efficient hydrolysis of magnetic milled powder from waste aluminum (Al) cans with low‐concentrated alkaline solution for hydrogen generation. International Journal of Energy Research, Article er.4621, 10 p. DOI:

Fakhimi O., Najafi A., Khalaj G. (2020). A facile rout to obtain Al2O3 nanopowder via recycling aluminum cans by sol-gel method. Materials Research Express, 7 (4), Article 045008, 13 p. DOI:

López-Juárez R., Razo-Perez N., Pérez-Juache T., Hernandez-Cristobal O., Reyes-López S.Y. (2018). Synthesis of α-Al2O3 from aluminum cans by wet-chemical methods. Results in Physics, 11, pp. 1075–1079. DOI:

Ahmedzeki N.S., Hussein S., Abdulnabi W.A. (2017). Recycling Waste Cans to Nano Gamma Alumina: Effect of the Calcination Temperature and pH. International Journal of Current Engineering and Technology, 7 (1), 8 p. —

Abdelrahman E.A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, pp. 72–82. DOI:

Kremser K., Gerl P., Pellis A., Guebitz G.M. (2021). A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans. Waste Management, 120, pp. 16–24. DOI:

Prieto Martínez V., Torres Torres J., Flores Valdés A. (2017). Recycling of aluminum beverage cans for metallic foams manufacturing. Journal of Porous Materials, 24 (3), pp. 707–712. DOI: 10.1007/s10934-016-0307-8

Daoud A., Abou El-Khair M.T., Fairouz F., Mohamed E., Lotfy A. (2021). Effect of Processing Parameters on 7075 Al-Silica Particle Waste Composite Foams Produced with Recycled Aluminum Cans. Physics of Metals and Metallography, article in Press. DOI:

GOST 55102–2012. Resursozberezheniye. Obrashcheniye s otkhodami. Rukovodstvo po bezopasnomu sboru, khraneniyu, transportirovaniyu i razborke otrabotavshego elektrotekhnicheskogo i elektronnogo oborudovaniya, za isklyucheniyem rtutsoderzhashchikh ustroystn i priborov. [Resources saving. Waste treatment. Guideline on the safe collection, storing, transporting and disassembling of the waste electrical and electronic equipment except mercury-containing devices and appliances]. Moscow : Standartinform, 2014. 12 p. (Rus.)

Kumar S., Singh V. (2019). E-waste: generation, environmental and health impacts, recycling and status of e-waste legislations. Journal of Emerging Technologies and Innovative Research, 6 (4), pp. 592–600. —

Rath S.S., Nayak P., Mukherjee P.S., Chaudhury G.R., Mishra B.K. (2012). Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching – A response surface modeling approach. Waste Management, 32 (3), pp. 575–583. DOI:

Sikarwar V.S., Hrabovský M., Van Oost G., PohořelýM., Jeremiáš M. (2020). Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science, 81, Article 100873, 34 p. DOI:

Wang S.B., Cheng C.M., Lan W., Zhang X.H., Liu D.P., Yang S.Z. (2013). Experimental Study of Thermal Plasma Processing Waste Circuit Boards. Advanced Materials Research, 652–654, pp. 1553–1561. DOI:

Volkova A.V. (2018). Rymok utilizatsii otkhodov (2018 god). [Waste disposal market (2018)]. Moscow : NIU VShE, 87 p. —Рынок%20утилизации%20отходов%202018.pdf (Rus.)

Pahari A.K., Dubey B.K. (2019). Waste from Electrical and Electronics Equipment. In: Plastics to Energ : Fuel, Chemicals, and Sustainability Implications. London : Elsevier Inc., pp. 443–468. DOI:

Fontana D., Forte F., Pietrantonio M., Pucciarmati S. (2021). Recent developments on recycling end-of-life flat panel displays : A comprehensive review focused on indium. Critical Reviews in Environmental Science and Technology, 51 (5), pp. 429–456. DOI:

Tan Q., Li J. (2019). Rare earth metal recovery from typical e-waste. In: Waste Electrical and Electronic Equipment (WEEE) Handbook. 2nd ed. London : Elsevier Inc, pp. 393–421. DOI:

Kadam A.R., Nair G.B., Dhoble S.J. (2019). Insights into the extraction of mercury from fluorescent lamps : A Review. Journal of Environmental Chemical Engineering, 7 (4), Article 103279. DOI:

Anand A., Singh R., Sheik A.R., Ghosh M.K., Sanjay K. (2019). Leaching of Rare Earth Metals from Phosphor Coating of Waste Fluorescent Lamps. Transactions of the Indian Institute of Metals, 72, pp. 623–634. DOI:

Patil A.B., Tarik M., Struis R.P.W.J., Ludwig C. (2021). Exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare earth metals. Resources, Conservation and Recycling, 164, Article 105153, 8 p. DOI:

Lecler M.-T., Zimmermann F., Silvente E., Masson A. Morèle Y., Remy A., Chollot A. (2018). Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination. Waste Management, 76, pp. 250–260. DOI:

Rai V., Liu D., Xia D., Jayaraman Y., Gabriel J.-C.P. (2021). Electrochemical Approaches for the Recovery of Metals from ElectronicWaste : A Critical Review. Recycling, 6 (3), Article 53. DOI:

Minamata Convention on Mercury — Text and Annexes. — (Accessed November 27, 2021)

Cenci M.P., Dal Berto F.C., Castillo B.W., Veit H.M. (2020). Precious and critical metals from wasted LED lamps: characterization and evaluation. Environmental Technology, 12 p. DOI:

Liu L., Keoleian G,A. (2020). LCA of rare earth and critical metal recovery and replacement decisions for commercial lighting waste management. Resources, Conservation and Recycling, 159, Article 104846, 12 p. DOI:

Rahman S.M.M., Kim J., Lerondel G., Bouzidi Y., Clerget L. (2019). Value Retention Options in Circular Economy: Issues and Challenges of LED Lamp Preprocessing. Sustainability, 11 (17), rticle 4723. DOI:

Mizanur Rahman S.M., Kim J., Lerondel G., Bouzidi Y., Nomenyo K., Clerget L. (2017). Missing research focus in end-of-life management of light-emitting diode (LED) lamps. Resources. Conservation and Recycling, 127(C), pp. 256–258. DOI:

Rahman S.M., Pompidou S., Alix T., Laratte B. (2021). A review of LED lamp recycling process from the 10 R strategy perspective. Sustainable Production and Consumption, 28, pp. 1178–1191. DOI:

Novyye khimicheskiye tekhnologii. Separatory dlia akkumulyatornykh batarey. [New chemical technologies. Battery separators]. — (Accessed November 27, 2021) (Rus.)

Zhang X., Li Li., Fan E., Xue Q., Bian Y., Wu F., Chen R. (2018). Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews, Aticle 10.1039.C8CS00297E, 64 p. DOI:

Steward D., Mayyas A., Mann M. (2019). Economics and Challenges of Li-Ion Battery Recycling from End-of-Life Vehicles. Procedia Manufacturing, 33, pp. 272–279. DOI:

Piątek J., Afyon S., Budnyak T.M., Budnyk S., Sipponen M.H., Slabon A. (2020). Sustainable Li‐Ion Batteries : Chemistry and Recycling. Advanced Energy Materials, 11 (43), Article 2003456, 31 p. DOI:

Fan M., Chang X., Meng Q., Wan L., Guo Y. (2021). Progress in the sustainable recycling of spent lithium‐ion batteries. SusMat, 1 (2), pp. 241–254. DOI:

Pinegar H., Smith Y.R. (2019). Recycling of End-of-Life Lithium Ion Batteries. Part I: Commercial Processes. Journal of Sustainable Metallurgy, 5, pp. 402–416. DOI:

Bai Y., Muralidharan N., Sun Y.-K., Passerini S., Stanley Whittingham M., Belharouak I. (2020). Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Materials Today, 41, pp. 304–315. DOI:

Zhang S., Ding Y., Liu B., Chang C. (2017). Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Management, 65, pp. 113–127. DOI:

Zhang L., Li L., Rui H., Shi D., Peng X., Ji L., Song X. (2020). Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. Journal of Hazardous Materials, Article 122840, 25 p. DOI:

Zhang W., Xu, C., He W., Li G., Huang J. (2018). A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Management & Research, 36 (2). pp. 99–112. DOI:

Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R., Walton A., Christensen P., Heidrich O., Lambert S., Abbott A., Ryder K., Gaines L., Anderson P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575 (7781), pp. 75–86. DOI:

Mikulionok I.O. (2015). Tekhnologichni osnovy pereroblennia polimeriv, plastmas i gumovykh sumishei. [Technological bases of processing of polymers, plastics and rubber mixtures]. Kyiv : NTUU «KPI». 312 p. (Ukr.)

Mikulionok I.O. (2020). Tekhnologichni osnovy pereroblennia polimernykh materialiv. [Technological bases of processing of polymeric materials]. Kyiv : KPI im. Igoria Sikorskoho. 292 p. — URL: (Ukr.)

Mikulionok I.O. (2005). Termoplastychni kompozytni materialy ta yikh napovniuvachi. Klasyfikatsiia ta zagalni vidomosti. [Thermoplastic composite materials and their fillers. Classification and general information]. Хімічна промисловість України, No. 5, pp. 30–39. (Ukr.)

Mikulionok I.O., Radchenko L.B. (2005). Polimerni kompozytni materially y vyroby z nykh. Oderzhannia, pereroblennia ta vlastyvosti. [Polymer composite materials and products from them. Obtaining, processing and properties]. Kyiv : IVTs «Vydavnytstvo “Politekhnika”», 179 p. (Ukr.).

Mikulionok I.O. (2012). Klassifikatsiya termoplasticheskikh kompozitsionnykh materialov i ikh napolniteley [Classification of thermoplastic composites and their fillers]. Plasnicheskiye massy, 9, pp. 29–38. (Rus.)

Velázquez-Martínez O., Valio J., Santasalo-Aarnio A., Reuter M., Serna-Guerrero R. (2019). A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries, 5 (4), pp. 68–100. DOI:

Xiao J., Li J., Xu Z. (2017). Recycling Metals from Lithium Ion Battery by Mechanical Separation and Vacuum Metallurgy. Journal of Hazardous Materials, 338 (15), pp. 124–131. DOI:

Silvestri L., Forcina A., Arcese G., Bella G. (2020). Recycling technologies of nickelâmetal hydride batteries: An LCA based analysis. Journal of Cleaner Production, 273, Article 123083, 13 p. DOI:

Kim H.-J., Krishna TNV, Zeb K., Rajangam V., Gopi C.V.V.M., Sambasivam S., Raghavendra K.V.G., Obaidat I.M. (2020). A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics, 9 (7), Article 1161. 44 p. DOI:

Advancing Sustainable Materials Management: 2018 Fact Sheet. Assessing Trends in Materials Generation and Management in the United States. —

How to Cite
Mikulionok, I. (2022). STATE AND PROSPECTS OF HANDLING METAL-CONTAINING HOUSEHOLD WASTE. Energy Technologies & Resource Saving, (2), 45-61.
Raw material processing and resource saving

Most read articles by the same author(s)

1 2 > >>