STATE AND PROSPECTS OF HANDLING GLASS WASTE (REVIEW)

Keywords: glass waste, glass bottles, cathode ray tube, LCD screen, waste management, recycling

Abstract

The basic data on the volume of world production of glass and glass products are presented. The ways of handling glass products that have lost their consumer properties are analyzed. The difference between glass waste and other solid waste is shown from the point of view of the possibility of their repeated recycling without loss of operational properties, as well as extremely slow decomposition in natural conditions. The main methods of handling glass waste are considered and a critical analysis of each of them is given. Particular attention is paid to the methods of recycling and disposal of glass waste, which make it possible to effectively use recycled glass raw materials directly for their intended purpose with their inherent operational properties. The use of glass waste in the composition of building materials and products is promising: concrete, asphalt, bricks, tiles, heat and sound insulation materials and products. However, before organizing the production of the corresponding products, thorough research should be carried out, primarily from the point of view of the effect on glass-containing materials and products of an alkaline-silica reaction (ASR), which can lead to cracking and premature destruction of the corresponding product. The main ways of solving the problem of glass waste are proposed. Bibl. 77, Fig. 1, Tab. 1.

Author Biography

I.O. Mikulionok, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

Doctor of Technical Sciences, Professor

References

Abdelli H.E., Mokrani L., Kennouche S., de Aguiar J.L.B. (2020). Utilization of waste glass in the improvement of concrete performance : A mini review. Waste Management & Research, 00(0). 10 p. DOI: https://doi.org/10.1177/0734242X20941090.

Mikulionok I.O. (2021). Stan i perspektyvy povodzhennia z tverdymy polimernymy vidkhodamy. [A state of art and prospects of plastic solid waste management]. Energotokhnologii ta resursozberezhennia, No. 2, pp. 52–73. DOI: https://doi.org/10.33070/etars.2.2021.05. (Ukr.)

Vinci G., D’Ascenzo F., Esposito A., Musarra M., Rapa M., Rocchi A. (2019). A sustainable innovation in the Italian glass production: LCA and Eco-Care matrix evaluation. Journal of Cleaner Production, 223, pp. 587–595. DOI: https://doi.org/10.1016/j.jclepro.2019.03.124

Miteva K. (2017). Production of sustainable energy from solid waste by pyrolysis. — A review. Recycling and Sustainable Development, 12 (1), pp. 69–77. DOI: https://doi.org/10.5937/ror1901069M.

Cui H., Sošić G. (2018). Recycling Common Materials: Effectiveness, Optimal Decisions, and Coordination Mechanisms. European Journal of Operational Research, 274, pp. 1055–1068. DOI: https://doi.org/10.1016/j.ejor.2018.11.010

Chto proiskhodit s vybroshennoy steklyannoy butylkoy? Yeye legche pererabotat, chem plastikovuyu? [What happens to a discarded glass bottle? Is it easier to recycle than plastic?]. — https://www.coca-cola.ru/news-and-trends/trends/recycling/what-happens-to-a-glass-bottle-after-you-throw-it-away (Accessed August 13, 2021). (Rus.)

Ves protsess pererabotki stekla: utilizatsiya kak sposob sokhranit prirodu i zarabotat. [The whole glass recycling process: recycling as a way to preserve nature and make money]. — https://rcycle.net/steklo/pererabotka-utilizatsiya (Accessed August 13, 2021) (Rus.)

Afshinnia, K., Rangaraju, P.R. (2016). Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Construction and Building Materials, 117, pp. 263–272. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.072

DSTU 4462.0.01:2005. Okhorona pryrody. Povodzhennia z vidkhodamy. Terminy ta vyznachennia poniat. [Environment protection. Wastes management (handling). Terms and concepts definitions]. Kyiv: Derzhspozhivstandart Ukrainy, 2007. 15 p. (Ukr.)

DSTU 4462.3.01:2006. Okhorona pryrody. Povodzhennia z vidkhodamy. Poriadok zdiisnennia operatsii. [Environment protection. Wastes management (handling). Order of operations realization]. Kyiv: Derzhspozhivstandart Ukrainy, 2008. 27 p. (Ukr.)

Gurina I.V. (2014). Analiz sychasnykh pidkhodiv do klassyfikatsii medychnykh vidkhodiv v Ukraini. [Analysis of modern approaches to the classification of medical waste in Ukraine]. Liky Ukrainy, No. 4, pp. 51–54. — https://www.health-medix.com/articles/liki_ukr_plus/2014-12-30/11.pdf (Ukr.)

Mikulionok I.O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsessy ta obladnannia khimichnoi tekhnologii. [Mechanical, Hydromechanical, and Mass-Exchange Processes and Equipment in Chemical Engineering]. Kyiv : NTUU «KPI», 340 p. — https://ela.kpi.ua/handle/123456789/38169 (Ukr.)

Мікульонок І.О. (2018). Mekhanichni ta hidromekhanichni protsessy, aparaty i mashiny khimichnoi tekhnologii. [Mechanical and hydromechanical processes, apparatuses and machines of chemical technology]. Kyiv : Igor Sikorsky Kyiv Polytechnic Institute, Vydavnytstvo «Politekhnika», 172 p. (Ukr.)

GOST R 56828.28–2017. Nailuchshiye dostupnye tekhnologii. Proizvodstvo stekla. Aspekty povysheniya energeticheskoy effektivnosti. [Best available techniques. Production of glass. Aspects for improving energy efficiency]. Moscow : Standartinform, 2017. 16 p. (Rus.)

Mikulionok I.O. (2020). Classification of convective drum dryers (survey of patents). Chemical and Petroleum Engineering, 56 (7–8), pp. 588–596. DOI: https://doi.org/10.1007/s10556-020-00814-8

Rishennia Yevropeiskoi komisii vid 29.01.1997 № 97/129/ЄС, shcho vstanovliuie identyfikatsiinu systemu dlia pakuvalnykh materialiv vidpovidno do Dyrektyvy 94/62/ЄC Yevropeiskogo Parlamentu i Rady pro upakovku ta ii vidkhody. [Decision of the European Commission of 29 January 1997 No. 97/129/EC establishing an identification system for packaging materials in accordance with Directive 94/62/EC of the European Parliament and of the Council on packaging and waste]. — https://minjust.gov.ua/m/str_45875 (Accessed August 13, 2021)

GOST 33573–2015. Resursosberezheniye. Upakonka. Kriterii vybora metodov i protsessov pererabotki ispolzovannoy upakovki v kachestve vtorichbykh materialnykh resursov s uchetom materialnykh potokov. [Resources saving. Package. Criteria for recycling methods and used package recycling processes with registration Row charts]. Moscow : Standartinform, 2019. 29 p. (Rus.)

Jiang Y., Ling T.-C., Mo K.H., Shi C. (2019). A critical review of waste glass powder — Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242 (15), pp. 440–449. DOI: https://doi.org/10.1016/j.jenvman.2019.04.098

Jani Y., Hogland W. (2014). Waste glass in the production of cement and concrete — A review. Journal of Environmental Chemical Engineering, 2 (3), pp. 1767–1775. DOI: https://doi.org/10.1016/j.jece.2014.03.016.

Dhir R.K., Dyer T.D., Tang M.C. (2009). Alkali-silica reaction in concrete containing glass. Materials and Structures, 42 (10), pp. 1451–1462. DOI: https://doi.org/10.1617/s11527-008-9465-8.

Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A., Horpibulsuk S. (2017). Practical recycling applications of crushed waste glass in construction materials : A review. Construction and Building Materials, 156, pp. 443–467. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.005.

Mohajerani A., Vajna J., Cheung T.H.H., Kurmus H., Arulrajah A., Horpibulsuk S. (2017). Practical recycling applications of crushed waste glass in construction materials : A review. Construction and Building Materials, 156, pp. 443–467. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.09.005

Corinldesi V., Gnapi G., Moricni G., Montenero A. (2005). Reuse of ground waste glass as aggregate for mortars. Waste Management, 25 (2), pp. 197–201. DOI: https://doi.org/10.1016/j.wasman.2004.12.009.

Bashar T., Ghassan N. (2008). Properties of concrete contains mixed colour waste recycled glass as sand and cement replacement. Construction and Building Materials, 22 (5). pp. 713–720. DOI: https://doi.org/10.1016/j.conbuildmat.2007.01.019.

Ke G., Li W., Li R., Li Y., Wang G. (2018). Mitigation Effect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite. International Journal of Concrete Structures and Materials, 12, Article 67, 14 p. DOI: https://doi.org/10.1186/s40069-018-0299-7

Bisikirske D., Blumberga D., Vasarevicius S., Skripkiunas G. (2019). Multicriteria Analysis of Glass Waste Application. Environmental and Climate Technologies, 23 (1), pp. 152–167. DOI: https://doi.org/10.2478/rtuect-2019-0011

Meyer C., Egosi N., Andela C. (2001). Concrete with Waste Glass as Aggregate. In: Recycling and Re-use of Glass Cullet. International Symposium Proceedings of the Concrete Technology Unit of ASCE and University of Dundee, March 19–20, 9 p. — http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.558.2591&rep=rep1&type=pdf

Yang S., Lu J.-X., Poon C.S. (2020). Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Construction and Building Materials, 262, Article 120865, 13 p. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120865

Mikulionok I.O. (2020). Classification of gravity mixers of bulk materials (survey of patents). Chemical and Petroleum Engineering, 56 (1–2), pp. 157–164. DOI: https://doi.org/10.1007/s10556-021-00884-2

Khan M.S., Tufail M., Mateeullah. (2018). Effects of Waste Glass Powder on the Geotechnical Properties of Loose Subsoils. Civil Engineering Journal, 4 (9), pp. 2044–2051. DOI: http://dx.doi.org/10.28991/cej-03091137

Poutos K.H., Alani A.M., Walden P.J., Sangha C.M. (2008). Relative temperature changes within concrete made with recycled glass aggregate. Construction and Building Materials, 22 (4), pp. 557–565. DOI: https://doi.org/10.1016/j.conbuildmat.2006.11.018.

Liu T., Song W., Zou D., Li L. (2018). Dynamic mechanical analysis of cement mortar prepared with recycled cathode ray tube (CRT) glass as fine aggregate. Journal of Cleaner Production, 174, pp. 1436–1443. DOI: https://doi.org/10.1016/j.jclepro.2017.11.057

Teja G N V.S., Sharma A. (2019). Usage of glass powder and recycled aggregate in concrete. Procedia Environmental Science, Engineering and Management (Conference: Environmental Innovations: Advances in Engineering, Technology and Management, EIAETM), 6, pp. 575–579. — http://procedia-esem.eu/pdf/issues/2019/no4/65_Teja_19.pdf

Olofinnade O.M., Ede A.N., Ndambuki J.M. (2017). Sustainable Green Environment through Utilization of Waste Soda-Lime Glass for Production of Concrete. Journal of Materials and Environmental Sciences, 8 (4), pp. 1139–1152. — http://www.jmaterenvironsci.com/Document/vol8/vol8_N4/121-JMES-2709-Olofinnade.pdf

Lu J.-X., Zheng H., Yang S., He P., Poon C.S. (2019). Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials, 223, pp. 210–220. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.231

Wang H., Sun Y., Liu L., Wang X., Ji R. (2018). Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile. Energy and Buildings, 168, pp. 67–75. DOI: https://doi.org/10.1016/j.enbuild.2018.03.018

Ogunro A.S., Apeh F.I., Nwannenna O.C., Ibhadode O. (2018). Recycling of Waste Glass as Aggregate for Clay Used in Ceramic Tile Production. American Journal of Engineering Research, 7 (8), pp. 272–278. — http://www.ajer.org/papers/Vol-7-issue-8/ZZG0708272278.pdf

Bursi E., Barbieri L., Lancellotti I., Saccani A., Bignozzi M. (2017). Lead waste glasses management: Chemical pretreatment for use in cementitious composites. Waste Management & Research, 35 (9), pp. 958–966. DOI: https://doi.org/10.1177/0734242X17715098

Yao Z., Ling T.-C., Sarker P.K., Su W., Liu J., Wu W., Tang J. (2018). Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: A critical review. Renewable and Sustainable Energy Reviews, 81, pp. 595–604. DOI: https://doi.org/10.1016/j.rser.2017.08.027

Liu H., Shi J., Qu H., Ding D. (2019). An investigation on physical, mechanical, leaching and radiation shielding behaviors of barite concrete containing recycled cathode ray tube funnel glass aggregate. Construction and Building Materials, 201, pp. 818–827. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.221

Tung-Chai L., Chi-Sun P. (2012). Feasible use of recycled CRT funnel glass as heavyweight fine aggregate in barite concrete. Journal of Cleaner Production, 33, pp. 42–49. DOI: https://doi.org/10.1016/j.jclepro.2012.05.003

Long W.-J., Gu Y.-c., Zheng D., Han N. (2018). Utilization of graphene oxide for improving the environmental compatibility of cement-based materials containing waste cathode-ray tube glass. Journal of Cleaner Production, 192, pp. 151–158. DOI: http://dx.doi.org/10.1016/j.jclepro.2018.04.229

Grdić D., Ristić N., Topličić–Ćurčić G., Krstić D. (2018). Potential of usage of self compacting concrete with addition of recycled crt glass for production of precast concrete elements. Facta universitatis. Series: Architecture and Civil Engineering, 16 (1), pp. 57–66. DOI: https://doi.org/10.2298/FUACE170125005G

Kim Kicheol, Kim Kidong. (2018). Valuable Recycling of Waste Glass generated from the Liquid Crystal Display Panel Industry. Journal of Cleaner Production, 174, pp. 191–198. DOI: https://doi.org/10.1016/j.jclepro.2017.10.326

Góra J., Franus M., Barnat-Hunek D., Franus W. (2019). Utilization of Recycled Liquid Crystal Display (LCD) Panel Waste in Concrete. Materials, 12 (18), Article 2941, 21 p. DOI: https://doi.org/10.3390/ma12182941

Ling T.-C., Poon C.S. (2017). Spent fluorescent lamp glass as a substitute for fine aggregate in cement mortar. Journal of Cleaner Production, 161, pp. 646–654. DOI: http://dx.doi.org/10.1016/j.jclepro.2017.05.173

D'Amore G.K.O., Caniato M., Travan A., Turco G., Marsich L., Ferluga A., Schmid C. (2017). Innovative thermal and acoustic insulation foam from recycled waste glass Powder. Journal of Cleaner Production, 165, pp. 1306–1315. DOI: https://doi.org/10.1016/j.jclepro.2017.07.214

Stochero N.P., de Souza Chami J.O.R., Souza M.T., de Moraes E.G., de Oliveira A.P.Novaes (2020). Green Glass Foams from Wastes Designed for Thermal Insulation. Waste and Biomass Valorization, 12 (3), pp. 1609–1620. DOI: https://doi.org/10.1007/s12649-020-01120-3

Souza M.T., Maia B.G.O., Teixeira L.B., de Oliveira K.G., Teixeira A.H.B., Novaes de Oliveira A.P. (2017). Glass foams produced from glass bottles and eggshell wastes. Process Safety and Environmental Protection, 111, pp. 60–64. DOI: http://dx.doi.org/doi:10.1016/j.psep.2017.06.011

Zach J., Sedlmajer M., Dufek Z., Bubenik J. (2018). Development of Light-Weight Concrete with Utilization of Foam Glass Based Aggregate. Solid State Phenomena, 276, pp. 276–281. DOI: https://doi.org/10.4028/www.scientific.net/SSP.276.276

Silva R.V., de Brito J., Lye C.Q., Dhir R.K. (2017). The role of glass waste in the production of ceramic-based products and other applications: A review. Journal of Cleaner Production, 167, pp. 346–364. DOI: https://doi.org/10.1016/j.jclepro.2017.08.185

Ramdani S., Guettala A., Benmalek M.L., Aguiar J.B. (2019). Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder. Journal of Building Engineering, 21, pp. 302–311. DOI: https://doi.org/10.1016/j.jobe.2018.11.003

Abdulkareem M.A., Rasool D.A., Mahmood A.K. (2018). The effect of using rubber tier and glass waste on the properties of cement mortar. Journal of Engineering and Sustainable Development. 22 (2, part 4), pp. 84–93. DOI: https://doi.org/10.31272/jeasd.2018.2.52

Mohammadinia A., Wong Y.C., Arulrajah A., Horpibulsuk S. (2019). Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths. Construction and Building Materials, 197, pp. 489–496. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.192

Chandni T.J., Anand K.B. (2018). Utilization of Recycled Waste as Filler in Foam concrete. Journal of Building Engineering, 19, pp. 154–160. DOI: https://doi.org/10.1016/j.jobe.2018.04.032

Dehghan A., Peterson K., Shvarzman A. (2017). Recycled glass fiber reinforced polymer additions to Portland cement concrete. Construction and Building Materials, 146, pp. 238–250. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.04.011

Mikulionok I.O. (2012). Klassifikatsiya termoplasticheskikh kompozitsionnykh materialov i ikh napolniteley. [Classification of thermoplastic composites and their fillers]. Plasnicheskiye massy, No. 9, pp. 29–38. (Rus.)

Małek M., Łasica W., Kadela M., Kluczyński J., Dudek D. (2021). Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement–Glass Composite. Materials, 14 (3), Article 637, 19 p. DOI: https://doi.org/10.3390/ma14030637

Małek M., Jackowski M., Łasica W., Kadela M., Wachowski M. (2021). Mechanical and Material Properties of Mortar Reinforced with Glass Fiber: An Experimental Study. Materials, 14 (3), Article 698, 14 p. DOI: https://doi.org/10.3390/ma14030698

Chen Z., Li J.S., Poon C.S. (2018). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, pp. 1447–1459. DOI: http://dx.doi.org/10.1016/j.jclepro.2017.10.140

Tahmoorian F., Samali B., Yeaman J., Crabb R. (2018). The Use of Glass to Optimize Bitumen Absorption of Hot Mix Asphalt Containing Recycled Construction Aggregates. Materials, 11 (7), Article 1053, 25 p. DOI: https://doi.org/10.3390/ma11071053

Rosli A.E., Sarif A.S. (2021). A Review of Potential on Modified Binder with Glass Cullet as Fine Aggregate Replacement. Progress in Engineering Application and Technology, 2 (1), pp. 258–265. DOI: https://doi.org/10.30880/peat.2021.02.01.024

Baqadeem A.O.A., Jakarni F.M., Al-Shakhrit A.K.S., Masri K.A. (2021). The usage of Recycled Glass in Hot Mix Asphalt: A Review. Construction, 1 (1), pp. 29–34. DOI: https://doi.org/10.15282/cons.v1i1.6324

Alhassan H.M., Yunusa G.H., Sanusi D. (2018). Potential of glass cullet as aggregate in hot mix asphalt. Nigerian Journal of Technolog, 37 (2), pp. 338–345. DOI: http://dx.doi.org/10.4314/njt.v37i2.8 10.4314/njt.v37i2.8

Mikulionok I.O. (2020). Tekhnologichni osnovy pereroblennia polimernykh materialov. [Technological bases of processing of polymeric materials]. Kyiv: KPI im. Igoria Sikorskoho. 292 p. — https://ela.kpi.ua/handle/123456789/35084 (Ukr.)

Mikulionok I.O. (2015). Tekhnologichni osnovy pereroblennia polimeriv, plastmas i gumovykh sumishei. [Technological bases of processing of polymers, plastics and rubber mixtures]. Kyiv: NTUU «KPI». 312 p. (Ukr.)

Olesik P., Kozioł M., Konik D., Jała J. (2019). The use of shredded car windscreen waste as reinforcement of thermoplastic composites for 3D (FDM) printing. Composites Theory and Practice, 19 (1), pp. 30–33. — https://kompozyty.ptmk.net/pliczki/pliki/1301_2019t01_piotr-olesik-mateusz-koziol-.pdf

Mikulionok I.O. (2011). Opredeleniye reologicheskikh svoystv termoplastichnykh kompozitsionnykh materialov. [Determination of the rheological properties of thermoplastic composite materials]. Plasnicheskiye massy, No. 7, pp. 26–30. (Rus.)

Ting A.G.H., Tay D.Y.W., Qian Y., Tan M.J. (2019). Utilization of recycled glass for 3D concrete printing: rheological and mechanical properties. Journal of Material Cycles and Waste Management, 21, pp. 994–1003. DOI: https://doi.org/10.1007/s10163-019-00857-x

Volotkovich Ye. Stroyeniya iz steklyannykh butylok: realnost ili fantastika. [Glass bottle structures: reality or fantasy]. — https://stroyday.ru/news/stroeniya-iz-steklyannyx-butylok-realnost-ili-fantastika.html (Accessed August 13, 2021)

Advancing Sustainable Materials Management: 2018 Fact Sheet. Assessing Trends in Materials Generation and Management in the United States. — https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf

Direktiva № 94/62/ЕС Yevropeyskogo Parlamenta i Soveta ob upakovke i otkhodakh ot upakovki (Briussel, 20 dekabria 1994 goda). [Directive 94/62/EC of the European Parliament and of the Council on packaging and packaging waste (Brussels, 20 December 1994)]. — https://zakon.rada.gov.ua/laws/show/994_b05#Text (Accessed August 13, 2021) (Rus.)

Abukasim S.M., Zuhria F., Saing Z. (2019). Alternative management of plastic waste. Journal of Physics: Conference Series. 1st Borobudur International Symposium on Applied Science and Engineering (BIS-ASE), 1517, Article 012041, 7 p. DOI: https://doi.org/10.1088/1742-6596/1517/1/012041

GOST 33521–2015. Resursosbereaheniye. Upakovka. Termiby i opredeleniya. [Resources saving. Packaging. Terms and definitions]. Moscow : Standartinform, 2018. 8 p. (Rus.)

David A., Thangavel Y.D., Sankriti R. (2019). Recover, Recycle and Reuse: An Efficient Way to Reduce the Waste. International Journal of Mechanical and Production Engineering Research and Development, 9 (3), pp. 31–42. DOI: https://doi.org/10.24247/ijmperdjun20194

Mikulionok I.O. (2021). Stan i perspektyvy povodzhennia z vykorystanymy PET-pliashkamy. [State and prospects of handling used PET bottles]. Energotokhnologii ta resursozberezhennia, No. 4. pp. 52–73. DOI: https://doi.org/10.33070/etars.4.2021.05

Mikulionok I.O. (2021). Stan i perspektyvy povodzhennia z pnevmatychnymy shynamy, shcho vtratyly svoi spozhyvchi vlastyvosti (Oglyad). [A state of art and prospects of used pneumatic tires management (Review)]. Energotokhnologii ta resursozberezhennia, No. 3. pp. 63–83. DOI: https://doi.org/10.33070/etars.3.2021.06

Published
2022-03-18
How to Cite
Mikulionok, I. (2022). STATE AND PROSPECTS OF HANDLING GLASS WASTE (REVIEW). Energy Technologies & Resource Saving, (1), 33-50. https://doi.org/10.33070/etars.1.2022.04
Section
Raw material processing and resource saving

Most read articles by the same author(s)