Keywords: solid waste, bottles, polyethylene terephthalate, waste management, recycling waste


The main data on the production volume of bottles from polyethylene terephthalate (PET) in the world are presented. The main ways of handling used PET bottles as one of the hazardous types of waste for the environment, but promising from the point of view of using their properties, are analyzed. The main methods of handling used PET bottles are considered and a critical analysis of each of them is given. Particular attention is paid to the methods of recycling PET bottles, which made it possible to efficiently use recycled PET raw materials directly for their intended purpose. The features of physical, chemical, biological and combined processing methods are also considered, in particular, combustion, gasification, pyrolysis, plasma decomposition of PET bottles, as well as their decomposition under the influence of microorganisms. The main ways of solving the problem of used PET bottles are proposed.  Bibl. 84, Fig. 1.

Author Biography

I.O. Mikulionok, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

Doctor of Technical Sciences, Professor


Kostiuk V.S., Sokolenko A.I., Vasylkivskyi K.V., Kostiuk Ye.V., Piddubnyi V.A. (2013). Fiztko-khimichni vlastyvosti pakuvalnykh materialiv. [Physico-chemical properties of packaging materials]. Kyiv : Kondor-Vydavnytstvo. 402 p. (Ukr.)

Mikulionok I.O., Radchenko L.B. (2005). Polimerni kompozytni materially y vyroby z nykh. Oderzhannia, pereroblennia ta vlastyvosti. [Polymer composite materials and products from them. Obtaining, processing and properties]. Kyiv : IVTs «Vydavnytstvo “Politekhnika”». 179 p. (Ukr.)

Mikulionok I.O., Sokolskyi O.L. (2015). Polimerni materially i vyroby z nykh (oderzhannia, pereroblennia, vlastyvosti). [Polymer materials and products from them (obtaining, processing and properties)]. Kyiv : NTUU «KPI». 208 p. — URL: https://ela.kpi.ua/handle/123456789/37632 (Ukr.)

Tournier V., Topham C. M., Gilles A., David B., Folgoas C., Moya-Leclair E., Kamionka1E., Desrousseaux M.-L., Texier H., Gavalda S., Cot M., Guémard E., Dalibey M., Nomme J., Cioci G., Barbe S., Chateau M., André I., Duquesne S., Marty A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580 (7802), pp. 216–219. https://doi.org/10.1038/s41586-020-2149-4

Plastic waste and recycling. Environmental Impact, Societal Issues, Prevention, and Solutions / Ed. T. M. Letcher. London: Elsevier Inc. 2020. 686 p. — URL: https://www.researchgate.net/profile/Mohanraj-Chandran/publication/339905534_Conversion_of_plastic_waste_to_fuel/links/5e982e474585150839e08d12/Conversion-of-plastic-waste-to-fuel.pdf (Accessed June 13, 2021)

Ji L.-n. (2013). Study on Preparation Process and Properties of Polyethylene Terephthalate (PET). Applied Mechanics and Materials, 312, pp. 406–410. https://doi.org/10.4028/www.scientific.net/amm.312.406

Kryzhanovskiy V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. (2005). Tekhnicheskiye svoystva polimernykh materialov. [Technical properties of polymeric materials]. Sankt-Peterburg : Professiya. 248 p. — URL: http://www.professija.ru/pdf/tehsvois.pdf (Rus.)

Mikulionok I.O. (2015). Tekhnologichni osnovy pereroblennia polimeriv, plastmas i gumovykh sumishei. [Technological bases of processing of polymers, plastics and rubber mixtures]. Kyiv : NTUU «KPI». 312 p. (Ukr.)

Mikulionok I.O. (2020). Tekhnologichni osnovy pereroblennia polimernykh materialiv. [Technological bases of processing of polymeric materials]. Kyiv : KPI im. Igoria Sikorskoho. 292 p. — URL: https://ela.kpi.ua/handle/123456789/35084 (Ukr.)

Mikulionok I.O. (2021). Stan i perspektyvy povodzhennia z tverdymy polimernymy vidkhodamy. [A state of art and prospects of plastic solid waste management]. Energotokhnologii ta resursozberezhennia, No. 2, pp. 52–73. https://doi.org/10.33070/etars.2.2021.05 (Ukr.)

A million bottles a minute: world's plastic binge 'as dangerous as climate change'. — URL: https://www.theguardian.com/environment/2017/jun/28/a-million-a-minute-worlds-plastic-bottle-binge-as-dangerous-as-climate-change (Accessed June 13, 2021).

Statista: Production of polyethylene terephthalate bottles worldwide from 2004 to 2021 (in billions). — URL: https://www.statista.com/statistics/723191/production-of-polyethylene-terephthalate-bottles-worldwide/ (Accessed June 13, 2021).

Dr. Frank Welle. The Facts about PET. — URL: https://www.petcore-europe.org/images/news/pdf/factsheet_the_facts_about_pet_dr_frank_welle_2018.pdf (Accessed June 13, 2021).

Vollmer I., Jenks M.J.F., Roelands M.C.P., White R.J., Harmelen van T., de Wild P., Laan van der G.P., Meirer F., Keurentjes J.T.F., Weckhuysen B.M. (2020). Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, pp. 15402–15423. https://doi.org/10.1002/anie.201915651.

Recycling of Polyethylene Terephthalate Bottles / S. Thomas, A.V. Rane, K. Kanny, V.K. Abitha, M.G. Thomas (Eds.). Amsterdam : Elsevier Inc., 2018. 212 p. — https://doi.org/10.1016/C2016-0-01084-7

DSTU 4462.0.01:2005. Okhorona pryrody. Povodzhennia z vidkhodamy. Terminy ta vyznachennia poniat. [Environment protection. Wastes management (handling). Terms and concepts definitions]. Kyiv: Derzhspozhivstandart Ukrainy, 2007. 15 p. (Ukr.)

GalPET: Pererobka vidkhodiv PET. [GalPET: Recycling of PET waste]. — URL: http://www.galpet.com.ua/?page_id=3 (Accessed June 13, 2021).

Mikulionok I.O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsessy ta obladnannia khimichnoi tekhnologii. [Mechanical, Hydromechanical, and Mass-Exchange Processes and Equipment in Chemical Engineering]. Kyiv : NTUU «KPI», 340 p. — URL: https://ela.kpi.ua/handle/123456789/38169. (Ukr.)

Tan Z., Fei Z., Zhao B., Yang J., Xu X., Wang Z. (2021). Identification for Recycling Polyethylene Terephthalate (PET) Plastic Bottles by Polarization Vision. IEEE Access, 9, pp. 27510–27617. https://doi.org/10.1109/ACCESS.2021.3050816.

Hamade R., Hadchiti R., Ammouri A. (2020). Making the Environmental Case for Reusable PET Bottles. Procedia Manufacturing. 43, pp. 201–207. https://doi.org/10.1016/j.promfg.2020.02.137.

15 idey, kak mozhno ispolzovat plastikovyye butylki na dache. [15 ideas on how to use plastic bottles in the country]. — URL: https://www.ogorod.ru/ru/main/inspiration/15033/15-idey-kak-mozhno-ispolzovat-plastikovyye-butylki-na-dache.htm (Accessed June 13, 2021).

Sharma H. (2017). Innovative and Sustainable Application of PET Bottle a Green Construction. Overview. Indian Journal of Science and Technology, 10 (16). 7 p. https://doi.org/10.17485/ijst/2017/v10i16/114307.

Ceja Soto F. R., Pérez Bueno J. de J., Mendoza López M. L., Pérez Ramos M. E., Reyes Araiza J. L., Ramírez Jiménez R., Manzano-Ramírez A. (2019). Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles. Recycling, 4 (3), pp. 30–45. https://doi.org/10.3390/recycling4030030.

Dorji U., Tenzin U., Dorji P., Pathak N., Johir M.A.H., Volpin F., Dorji C., Chernicharo C.A.L., Tijing L., Shon H., Phuntsho S. (2021). Exploring shredded waste PET bottles as a biofilter media for improved on-site sanitation. Process Safety and Environmental Protection, 148, pp. 370–381. — https://doi.org/10.1016/j.psep.2020.09.066

Gaita E., Evangelisti C., Panzarasa G. (2018). A Proof-of-Concept Portable Water Purification Device Obtained from PET Bottles and a Magnetite-Carbon Nanocomposite. Recycling, 3 (3), pp. 31–41. https://doi.org/10.3390/recycling3030031.

Gubanova E., Kupinets L., Deforzh H., Koval V., Gaska K. (2019). Recycling of polymer waste in the context of developing circular economy. Architecture Civil Engineering Environment, No. 4, pp. 99–108. https://doi.org/10.21307/ACEE-2019-055.

Mikulionok I.O. (2011). Pretreatment of Recycled Polymer Raw Material. Russian Journal of Applied Chemistry, 83 (6), pp. 1105−1113. https://doi.org/10.1134/S1070427211060371.

Küppers B., Chen X., Seidler I., Friedrich K., Raulf K., Pretz T., Feil A., Pomberger R., Vollprecht D. (2019). Influences and consequences of mechanical delabelling on pet recycling. Detritus, 6, pp. 39–46. — https://doi.org/10.31025/2611-4135/2019.13816

Mikulionok I.O. (2009). Obladnannia i protsessy pererobky termoplastychnykh materialiv z vykorystanniam vtorynnoi syrovyny. [Processes and the equipment of processing of thermoplastics with use of secondary raw materials]. Kyiv : NTUU «KPI». 264 p. — URL: https://ela.kpi.ua/handle/123456789/28259 (Ukr.)

Mikulionok I.O. (2015). Classification of Processes and Equipment for Manufacture of Continuous Products from Thermoplastic Materials. Chemical and Petroleum Engineering, 51 (1–2), pp. 14–19. https://doi.org/10.1007/s10556-015-9990-6.

Mikulyonok I.O. (2013). Equipment for preparing and continuous molding of thermoplastic composites. Chemical and Petroleum Engineering, 48 (11–12), pp. 658–661. https://doi.org/10.1007/s10556-013-9676-x.

ITS 15-2016. Utilizatsiya i obezvrezhivaniye otkhodov (krome obezvrezhivaniya termicheskim sposobom (szhiganiye otkhodov). Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam. [Recycling and disposal of waste (except for thermal treatment (waste incineration). Information and technical guide to the best available technologies]. Moscow : Biuro NDT, 2016. 198 p. (Rus.)

Benavides P.T., Dunn J.B., Han J., Biddy M., Markham J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry & Engineering, 6 (8), pp. 9725–9733. https://doi.org/10.1021/acssuschemeng.8b00750.

Tylman I., Dzierżek K. (2020). Filament for a 3D Printer from Pet Bottles – Simple Machine. International Journal of Mechanical Engineering and Robotics Research, 9 (10), pp. 1386–1392. https://doi.org/10.18178/ijmerr.9.10.1386-1392.

Little H.A., Tanikella N.G., Reich M.J., Fiedler M.J., Snabes S.L., Pearce J.M. (2020). Towards Distributed Recycling with Additive Manufacturing of PET Flake Feedstocks. Materials, 13 (19), Article 4273, 22 p. https://doi.org/10.3390/ma13194273.

Ragaert K., Delva L., Geemb van K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, pp. 24–58. — http://dx.doi.org/10.1016/j.wasman.2017.07.044

Mikulionok I.O., Radchenko L.B. (2006). Pererobka vtorynnoi syrovyny ekstruziieiu. [Processing of secondary raw materials by extrusion]. Kyiv : NTUU «KPI», 184 p. — URL: https://ela.kpi.ua/handle/123456789/38062 (Ukr.)

Eriksen M.K., Christiansen J.D., Daugaard A.E., Astrup T.F. (2019). Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Management, 96, pp. 75–85. https://doi.org/10.1016/j.wasman.2019.07.005.

Schyns Z.O.G., Shaver M.P. (2020). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, Article 2000415. 27 p. — https://doi.org/10.1002/marc.202000415

Majumdar A., Shukla S., Singh A.A., Arora S. (2020). Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles. Resources, Conservation and Recycling, 161, Article 104915, 10 p. https://doi.org/10.1016/j.resconrec.2020.104915.

Sarıoğlu E. (2017). Ecological Approaches in Textile Sector: The Effect of r-PET Blend Ratio on Ring Spun Yarn Tenacity. Periodicals of Engineering and Natural Sciences, 5 (2), pp. 176–180. https://doi.org/10.21533/pen.v5i2.110.

Albini G., Brunella V., Placenza B., Martorana B., Guido Lambertini V. (2018). Comparative study of mechanical characteristics of recycled PET fibres for automobile seat cover application. Journal of Industrial Textiles, 48 (6), pp. 992–1008. https://doi.org/10.1177/1528083717750887.

Duong V., Ahmed A., Farook O. (2018). A Model Template Green Environment Initiative for Recycling Plastic Bottles with Progressive Entrepreneurship Partnership. Portland International Conference on Management of Engineering and Technology (PICMET), 5 p. https://doi.org/10.23919/PICMET.2018.8481786.

Kusumocahyo S. P., Ambani S. K., Kusumadewi S., Sutanto H., Widiputri D. I., Kartawiria I. S. (2020). Utilization of used polyethylene terephthalate (PET) bottles for the development of ultrafiltration membrane. Journal of Environmental Chemical Engineering, 8, Article 104381, 11 p. https://doi.org/10.1016/j.jece.2020.104381.

Mikulionok I.O. (2005). Termoplastychni kompozytni materialy ta yikh napovniuvachi. Klasyfikatsiia ta zagalni vidomosti. [Thermoplastic composite materials and their fillers. Classification and general information]. Himichna promyslovist Ukrainy, No. 5, pp. 30–39. (Ukr.)

Mikulionok I.O. (2012). Klassifikatsiya termoplasticheskikh kompozitsionnykh materialov i ikh napolniteley. [Classification of thermoplastic composites and their fillers]. Plasnicheskiye massy, No. 9, pp. 29–38. (Rus.)

Khalid F.S., Azmi N.B., Mazenan P.N., Shahidan S., Othman N.h., Guntor N.A.A. (2018). Self-consolidating concretes containing waste PET bottles as sand replacement. AIP Conference Proceedings, Article 020034, 6 p. — https://doi.org/10.1063/1.5022928

Jassim A.K. (2017). Recycling of Polyethylene Waste to Produce Plastic Cement. Procedia Manufacturing, 8, pp. 635–642. https://doi.org/10.1016/j.promfg.2017.02.081.

Ricardo J.R.C. (2019). Use of Residues of Crushed Pet Bottles in the Form of a Scale as an Addition to the Manufacture of Concrete. In: Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete; J.F. Martirena-Hernandez, A. Alujas-Díaz, M. Amador-Hernandez (Eds.). Cham: Springer. 2019, pp. 251–263. — https://doi.org/10.1007/978-3-030-22034-1_29

Bui N. K., Satomi T., Takahashi H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management, 78, pp. 79–93. — https://doi.org/10.1016/j.wasman.2018.05.035

Ge Z., Sun R., Zhang K., Gao Z., Li P. (2013). Physical and mechanical properties of mortar using waste Polyethylene Terephthalate bottles. Construction and Building Materials, 44, pp. 81–86. https://doi.org/10.1016/j.conbuildmat.2013.02.073.

Lin X., Yu J., Li H., Lam J.Y.K., Shih K., Sham I.M.L., Leung C.K.Y. (2018). Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC). Journal of Hazardous Materials, 357, pp. 40–52. https://doi.org/10.1016/j.jhazmat.2018.05.046.

Aghayan I., Khafajeh R. (2019). Recycling of PET in asphalt concrete. In: Use of Recycled Plastics in Eco-Efficient Concrete; F. Pacheco-Torgal, J. Khatib, F. Colangelo, R. Tuladhar (Eds.). Sawston: Woodhead Publishing. pp. 269–285. https://doi.org/10.1016/b978-0-08-102676-2.00012-8.

Al-Mosawi A.I., Abdulsada S.A. (2018). Technological Procedure for Recycling of PET Waste for Sustainable Environment Concept Achievement. Open Access Library Journal, 5, 6 p. https://doi.org/10.4236/oalib.1104327.

Zhang R., Ma X., Shen X., Zhai Y., Zhang T., Ji C., Hong J. (2020). PET bottles recycling in China: An LCA coupled with LCC case study of blanket production made of waste PET bottles. Journal of Environmental Management, 260, Article 110062, 11 p. https://doi.org/10.1016/j.jenvman.2019.110062.

Ronkay F., Molnar B., Gere D., Czigany T. (2021). Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Management, 119, pp. 101–110. https://doi.org/10.1016/j.wasman.2020.09.029.

Fakirov S. (2021). A new approach to plastic recycling via the concept of microfibrillar composites. Advanced Industrial and Engineering Polymer Research. Article in press. 12 p. — https://doi.org/10.1016/j.aiepr.2021.02.001

Mikulionok I.O. (2013). Screw extruder mixing and dispersing units. Chemical and Petroleum Engineering, 49 (1–2), pp. 103–109. https://doi.org/10.1007/s10556-013-9711-y.

Mikulionok I.O. (2011). Opredeleniye reologicheskikh svoystv termoplastichnykh kompozitsionnykh materialov. [Determination of the rheological properties of thermoplastic composite materials]. Plasnicheskiye massy, No. 7, pp. 26–30. (Rus.)

Mikulenok I.O. (2013). Determining the thermophysical properties of thermoplastic composite materials. International Polymer Science and Technology, 40 (9), pp. 23–28. — https://doi.org/10.1177/0307174X1304000905

Shojaei B., Abtahi M., Najafi M. (2020). Chemical recycling of PET: A stepping‐stone toward sustainability. Polymers for Advanced Technologies, 31 (12), pp. 2912–2938. — https://doi.org/10.1002/pat.5023

Thiounn T., Smith R.C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58 (10), pp. 1347–1364. https://doi.org/10.1002/pol.20190261.

Raheem A.B., Noor Z.Z., Hassan A., Abd Hamid M.K., Samsudin S.A., Sabeen A.H. (2019). Current Developments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. Journal of Cleaner Production, 225 (29), pp. 1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019.

Rahimi A., García J.M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1 (6), Article 0046, 11 p. https://doi.org/10.1038/s41570-017-0046.

Pudack C., Stepanski M., Fässler P. (2020). PET Recycling — Contributions of Crystallization to Sustainability. Chemie Ingenieur Technik, 92 (4), pp. 452–458. https://doi.org/10.1002/cite.201900085.

Ügdüler S., Van Geem K.M., Denolf R., Roosen M., Mys N., Ragaert K., De Meester S. (2020). Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green chemistry, 22 (16), pp. 5376–5394. https://doi.org/10.1039/d0gc00894j.

Cavalcante S., Vieira D., Melo I. (2019). Chemical Recycling: Comparative Study about the Depolymerization of PET Waste-Bottles to Obtain Terephthalic Acid. Proceedings. 41 (1), pp. 78–86. — https://doi.org/10.3390/ecsoc-23-06650

Sun C., Chen X., Zhuo Q., Zhou T. (2018). Recycling and depolymerization of waste polyethylene terephthalate bottles by alcohol alkali hydrolysis. Journal of Central South University, 25 (3), pp. 543–549. https://doi.org/10.1007/s11771-018-3759-y.

Singh S., Sharma S., Umar A., Mehta S.K., Bhatti M.S., Kansal S.K. (2018). Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid. Journal of Nanoscience and Nanotechnology, 18 (8), pp. 5804–5809. https://doi.org/10.1166/jnn.2018.15363.

Lee H.L., Chiu C.W., Lee T. (2021). Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances, 5, Article 100079, 14 p. — https://doi.org/10.1016/j.ceja.2020.100079

Spasojević P.M., Panić V.V., Džunuzović J.V., Marinković A.D., Woortman A.J.J., Loos K., Popović I.G. (2015). High performance alkyd resins synthesized from postconsumer PET bottles. RSC Advances, 5 (76), pp. 62273–62283. https://doi.org/10.1039/c5ra11777a.

Bal K., Ünlü K.C., Acar I., Güçlü G. (2017). Epoxy-based paints from glycolysis products of postconsumer PET bottles: synthesis, wet paint properties and film properties. Journal of Coatings Technology and Research, 14 (3), pp. 747–753. https://doi.org/10.1007/s11998-016-9895-0.

Kaliveer V., Ramachandra R., Kumar P., Prajwal, Shetty M.S., DSilva R. (2020). Recycling and conversion of waste PET bottles into acrylic paints. AIP Conference Proceedings, 2236 (1), Article 040019, 7 p. — https://doi.org/10.1063/5.0007730

El Essawy N.A., Konsowa A.H., Elnouby M., Farag H.A. (2016). A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. Journal of the Air & Waste Management Association, 67 (3), pp. 358–370. https://doi.org/10.1080/10962247.2016.1242517.

Elessawy N.A., Elnouby M., Gouda M.H., Hamad H.A., Taha N.A., Gouda M., Mohy Eldin M.S. (2019). Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: Adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. Chemosphere, 239, Article 124728, 10 p. https://doi.org/10.1016/j.chemosphere.2019.124728.

Jabłońska B., Kiełbasa P., Korenko M., Dróżdż T. (2019). Physical and Chemical Properties of Waste from PET Bottles Washing as A Component of Solid Fuels. Energies, 12 (11), Article 2197, 17 p. https://doi.org/10.3390/en12112197.

Mikulionok I.O. (2021). Stan ta perspektyvy povodzhennia z pnevmatychnymy shynamy, shcho vtratyly svoi spozhyvchi vlastyvosti. [A state of art and prospects of used pneumatic tires management (Review)]. Energotekhnologii ta resursozberezhennia, No. 3, pp. 63–83. https://doi.org/10.33070/etars.3.2021.06

Li S. (2019). PET recycling via gasification - Influence of operating conditions on product distribution: Master’s thesis. Gothenburg (Sweden): Chalmers University of Technology. 100 p. — URL: https://publications.lib.chalmers.se/records/fulltext/257443/257443.pdf

Koshti R., Mehta L., Samarth N. (2018). Biological Recycling of Polyethylene Terephthalate: A Mini-Review. Journal of Polymers and the Environment, 26 (8), pp. 3520–3529. https://doi.org/10.1007/s10924-018-1214-7.

Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y., Oda K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351 (6278), pp. 1196–1199. https://doi.org/10.1126/science.aad6359.

Ministerstvo rozvytku gromad ta terytorii Ukrainy: Stan sfery povodzhennia z pobutovymy vidkhodamy v Ukraini za 2019 rik. [Ministry of Development of Communities and Territories of Ukraine: The state of the sphere of household waste management in Ukraine in 2019]. — URL: https://www.minregion.gov.ua/napryamki-diyalnosti/zhkh/terretory/stan-sfery-povodzhennya-z-pobutovymy-vi/ (Accessed June 13, 2021) (Ukr.)

Shcho robyty z vykorystanymy pliashkamy z PETF dlia napoiv? [What to do with used PET bottles for drinks?]. Upakovka. 2020. No. 5, pp. 42–43.

Direktyva № 94/62/ЕS Yevropeyskogo Parlamenta i Soveta ob upakovke i otkhodakh ot upakovki (Bryussel, 20.12.1994). [Directive (EU) 94/62 of the European Parliament and of the Council on packaging and packaging waste (Brussels, 20 December 1994)]. — URL: https://zakon.rada.gov.ua/laws/show/994_b05#Text (Accessed June 13, 2021) (Rus.)

Direktyva № 2019/904/ЕS Yevropeyskogo Parlamenta i Soveta ot 5 iyunya 2019 g. o sokrashchenii vliyaniya nekotorykh plastikovykh produktov na okruzhayushchuyu sredu. [Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the environmental impact of certain plastic products]. — URL: http://ecoportus.ru/node/968 (Accessed June 13, 2021) (Rus.)

How to Cite
Mikulionok, I. (2021). A STATE OF ART AND PROSPECTS OF HANDLING USED PET BOTTLES. Energy Technologies & Resource Saving, (4), 45-61. https://doi.org/10.33070/etars.4.2021.05
Raw material processing and resource saving

Most read articles by the same author(s)