• K.V. Simeyko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • A.I. Malinouski A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, Minsk
  • S.O. Karsim National Science Center «Kharkov Institute of Physics and Technology», Kharkiv
  • M.A. Sydorenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • A.D. Kustovska National Aviation University, Kyiv
  • O.O. Liaposhchenko Sumy State University, Sumy
  • S.V. Kupriyanchuk Institute for Safety Problems of NPP of the National Academy of Sciences of Ukraine, Chornobyl
Keywords: pyrocarbon, electrothermal fluidized bed, pyrolysis, natural gas


Carbon materials with a wide range of performance properties are used in various science, technology, and industry fields. For example, Pyrocarbon has the prospect of being used in nuclear power engineering, special metallurgy, aerospace technologies, heat exchange equipment, medicine, mechanical engineering, reactor building and other industries. The research described in the article aims to study the process of obtaining pyrocarbon in an electrothermal fluidized bed. The research is based on experimental methods of studying the process of obtaining pyrolytic carbon. Pyrocarbon is precipitated during pyrolysis (thermal destruction) of hydrocarbons in an electrothermal fluidized bed reactor. Natural gas was used as a fluidizing agent, and crushed fine electrode graphite of the GE model was used as a fluidized bed. When producing batches of pyrocarbon material, taking into account that the particle size will increase, these particles were crushed and subsequently used as a fluidized bed, thereby replacing graphite with pyrocarbon. As a result of the experimental studies carried out in the reactor with the electrothermal fluidized bed reactor, the batches of pyrocarbon material that were produced based on artificial graphite were produced. Studies using electron microscopy showed a change in the color and structure of the pyrocarbon coating depending on the processing cycle in the electrothermal fluidized bed reactor at temperatures of 900–1200 °C. Diffractometric analysis showed that pyrocarbon was identified in the treated material. Therefore, the adequacy of the method for calculating the heat balance has been confirmed. Bibl. 36, Fig. 7, Table 1.

Author Biographies

K.V. Simeyko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Doctor of Engineering Sciences

A.D. Kustovska, National Aviation University, Kyiv

Candidate of Chemical Sciences

O.O. Liaposhchenko, Sumy State University, Sumy

Doctor of Technical Sciences, Professor


Voitszekker E., Lovins E., Lovins L. Factor chetyry. Zatrat — polovina, otdacha dvoynaya : Novyj doklad Rimskomu klubu. Moscow: Akademija, 2000. 400p. (Rus.)

Bushuev Ju.G., Persin M.I., Sokolov V.A. [Carbon-carbon composite materials. Handbook]. Moscow: Metallurgija, 1994. 128 p. (Rus.)

Burja A.I., Bajgushev V.V., Burmistr M.V. [Carbon-carbon composites — production, properties and application in electrothermics]. Dnepropetrovsk : Izdatelstvo Fedorchenko, 2012. 132 p. (Rus.)

Azhazha V.M., Gurin V.A., Nekljudov I.M. [Carbon-carbon composites : Preprint]. Kharkov : Harkovskij fiziko-tehnicheskij institut, 2009. 22 p. (Rus.)

Fialkov A.S. [Interlayer compounds and composites based on them]. Moscow : Aspekt-Press,1997. 709 p. (Rus.)

Gurin V.A., Gurin I.V., Murin Ju.E. [On some possibilities of gas phase method for producing carbon-carbon heating units for growing monocrystals]. Voprosy atomnoj nauki i tehniki. 1999. Iss. 4. pp. 46–55. (Rus.)

Zelenskij V.F., Gurin V.A., Konotop Ju.F., Odejchuk N.P. [Spherical fuel rods and PELs VTGR]. Voprosy atomnoj nauki i tehniki. 1999. Iss. 4. pp. 56–67. (Rus.)

Sіmeiko K.V. [Resorch of the possibility of carbothermal reduction of silicon]. Vіdnovljuval'na energetika. 2014. No. 1. pp. 44–47. (Ukr.)

Bondarenko B., Bogomolov V., Kozhan A., Khovavko A., Nazarenko V., Simeiko K. Development of technological foundations for pure silicon production by carbothermic reduction. International journal of energy of clean environment. 2013. 14 (2–3). pp. 183–189.

Pat. 98747 Ukraine, C 01 B 33/023 (2006/01).[The method of obtaining high-purity silicon]. V.O. Bogomolov, O.P. Kozhan, B.I. Bondarenko, K.V. Simeiko; Applicant and patent holder: The Gas Institute of National Academy of Science of Ukraine, № а201109562; applic. date: 29.07.2011; publ. date: 11.06.2012. Bull 11. (Ukr.)

Simeiko K.V. [Thermophysical analysis of the uranium carbide production process using electrothermal fluidized bed technology]. Vestnik Nacional'nogo jadernogo centra Respubliki Kazahstan. 2018. Iss. 3. pp. 111–116. (Rus.)

Alekseev Ju.S., Dzhur O.E., Kulik O.V., Kuchma L.D. [Rocket and space aircraft production technology]. Dnepropetrovsk : Art-Press, 2007. 477 p. (Rus.)

Dzhur Ye.O., Kuchma L.D., Manko T.A. [Polymeric and composite materials in rocket and space technology]. Kyiv : Vyshcha osvita, 2003. 399 p. (Ukr.)

Bulanov I.M., Vorobej V.V. [Technology of rocket and aerospace structures made of composite materials]. Moscow : Moskovskij gosudarstvennyj tehnicheskij universitet im. N. E. Baumana, 1998. 516 p. (Rus.)

Bychkov S.A., Haidachuk O.O. [Technology of hardware production from composite materials]. Kharkiv : ISDO, 1995. 376 p. (Ukr.)

Kolesnikov S.A. [Carbon composite materials for high-temperature metallurgical equipment]. Metallurg. 1996. No. 2. pp. 18–22. (Rus.)

Kolesnikov S.A., Kraveckij G.A. [Pyrolytic technology for assembling heat-resistant structures from carbon materials]. Metallurg. 1996. No. 8. pp. 31–34. (Rus.)

Kostikov V.I., Varenkov A.N. [Ultra-high-temperature composite materials]. Moscow : Intermet Inzhiniring, 2003. 560 p. (Rus.)

Garashhenko Ja.N., Kryzhnyj G.K., Popov A.I., Belyj E.G. [Development of the implant design for the thoracic spine vertebra using a carbon-carbon composite]. Suchasni tekhnolohii v mashynobuduvanni. 2016. Iss. 11. pp. 87–91. (Rus.)

Bellemère P. Pyrocarbon implants for the hand and wrist. Hand Surgery and Rehabilitation. 2018. ol. 37, Iss. 3. pp. 129–154. —

Pettersson K., Amilon A., Rizzo M. Pyrolytic carbon hemiarthroplasty in the management of proximal interphalangeal joint arthritis. The jornal of hand surgery. 2014. Vol. 40, Iss. 3. P. 462–468. — DOI:

Sinani I.L., Shurik A.G., Osorgin Ju.K., Bushuev V.M. [Carbon-carbon materials for orthopedics and traumatology]. Rossijskij zhurnal biomehaniki. 2012. 16 (2). pp. 74–82. (Rus.)

Skachkov V.О. [Scientifico-technical founda-tions of the formation of functional properties of composite materials based on carbon : Dissertation of the doctor of technical sciences]. Kyiv, 2018. 392 p. (Ukr.)

Dors M., Nowakowska H., Jasiński M., Mizeraczyk Je. Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing. 2014. 34 (2). pp. 313–326.

Younessi-Sinaki M., Matida E.A., Hamdullahpur F. Kinetic model of homogeneous thermal decomposition of methane and ethane. International journal of hydrogen energy. 2009. No. 34. P. 3710–3716. (Eng.)

Cho Young-Gil, Choi Kyong-Hoon, Kim Young-Rok, Lee Sung-Han. Kinetic investigation of oxidative Methane pyrolysis at high CH4/O2 ratio in a quartz flow microreactor below 1073 K. Bull. Korean Chem. Soc. 2008. 29 (8). pp. 1609. (Eng.)

Strel'cov I.A., Mishakov I.V., Vedjagin A.A., Mel'gunov M.S. [Synthesis of carbon nanomaterials from hydrocarbon raw materials on the catalyst Ni / SBA-15]. Himija v interesah ustojchivogo razvitija. 2014. No. 22. pp. 187–194. (Rus.)

Kurbakov S.D. [Carbon phases formed during pyrolysis of gaseous hydrocarbons in the reaction volume of the fluidized bed apparatus]. Neorganicheskie materialy. 2009. 45 (1). pp. 26–37. (Rus.)

Semeiko K.V., Kustovskyi S.S., Kupriyanchuk S.V., Chumak R.E. Dependence of the pyrocarbon structure on the parameters of the process of pyrolysis of hydrocarbon gases in an electrothermal fluidized bed. Journal of Engineering Physics and Thermophysics. 2020. 93 (3). pp. 677–684. DOI: 10.1007/s10891-020-02166-9.

Xavier Bourrat, Francis Langlais, Georges Chollon Gérard, Louis Vignoles. Low temperature pyrocarbons : A review. Journal of the Brazilian Chemical Society. 2006. Vol. 17, Iss. 6. pp. 1090–1095. DOI:10.1590/s0103-50532006000600005.

Skachkov V.A., Berezhnaya O.R. Physicochemical Foundations of Compactification of the Porous Structure of Pyrocarbon from the Gas Phase. Materials Science. 2015. Vol. 50, Iss. 4. pp. 585–592.

Isabelle Ziegler, René Fournet, Paul-Marie Marquaire. Pyrolysis of propane for CVI of pyrocarbon. Part II: Experimental and modeling study of polyaromatic species. Journal of Analytical and Applied Pyrolysis. 2005. Vol. 73, Iss. 2. pp. 231–247. —

Pat. 146598 Ukraine, С 23 С 16/26 (2006.01). [The method of obtaining pyrocarbon]. K.V. Simeiko, V.A. Borodulia, S.Yu. Saienko, K.V. Lobach, O.P. Kozhan, V.M. Dmitriiev, M.A. Sydorenko, Ya.O. Ivachkin, O.V. Marasin, S.S. Kustovskyi, R.E. Chumak; Applicant and patent holder: The Gas Institute of National Academy of Science of Ukraine. № u202006806; applic. date: 22.10.2020; publ. date: 03.03.2021, Bull. 9. (Ukr.)

Pat. 83147 Ukraine, C 10 G 9/32 (2006.01). [Reactor for pyrolysis of gaseous hydrocarbons]. V.O. Bohomolov, B.I. Bondarenko, O.P. Kozhan, K.V. Simeiko; Applicant and patent holder: The Gas Institute of National Academy of Science of Ukraine. № u201303318; applic. date 18.03.2013; publ. date: 27.08.2013, Bull. 16. (Ukr.)

Simeiko K.V. [Research of some thermophysical features of the process of protective pyrocarbon coating application on a coated particle fuel model]. Vestnik Nacional'nogo jadernogo centra Respubliki Kazahstan. 2020. Iss. 1. pp. 23–29. (Rus.)

Pat. 133969 Ukraine, C 04 B 35/00 (2019.01), C 04 B 35/56 (2006.01), C 01 B 32/956 (2017.01). [The method of obtaining silicon carbide]. K.V. Simeiko, B.I. Bondarenko, V.O. Borodulia, L.M. Vynohradov, A.Zh. Hrebenkov, O.P. Kozhan, V.M. Dmitriiev, V.S. Riabchuk, M.A. Sydorenko, I.O. Pysarenko; Applicant and patent holder: The Gas Institute of National Academy of Science of Ukraine. № u201811907; applic. date 3.12.2018; publ. date: 25.04.2019, Bull. 8. (Ukr.)

How to Cite
Simeyko, K., Malinouski, A., Karsim, S., Sydorenko, M., Kustovska, A., Liaposhchenko, O., & Kupriyanchuk, S. (2021). INVESTIGATION OF THE PROCESS OF OBTAINING PYROCARBON IN AN ELECTROTHERMAL FLUIDIZED BED. Energy Technologies & Resource Saving, (3), 32-43.
Energy saving technologies