Keywords: solid waste, environmental pollution, waste management, recycling


Basic data on the volume and structure of solid waste in the world and Ukraine are presented. The need to improve the ways of handling plastic solid waste as one of the most dangerous for the environment and promising from the point of view of using their properties is shown. A detailed classification of methods for handling plastic solid waste is proposed and a critical analysis of each of them is given. Particular attention is paid to the methods of disposal of plastic solid waste, in particular, recycling, which makes it possible to effectively use secondary plastic raw materials directly for their intended purpose. The features of physical, chemical, biological and combined processing methods are also considered, in particular combustion, gasification, pyrolysis, plasma decomposition of plastic solid waste, as well as their decomposition under the influence of sunlight and microorganisms. The main ways of solving the problem of plastic solid waste in Ukraine are proposed. Bibl. 83, Fig. 3, Tab. 3.

Author Biography

I.O. Mikulionok, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

Doctor of Technical Sciences


Ritchie H., Roser M. (2018). Plastic Pollution. Our World in Data. — URL: https://ourworldindata.org/plastic-pollution# (Accessed April 13, 2021)

Parker L. (2019). The world’s plastic pollution crisis explained. — URL: https://www.nationalgeo-graphic.com/environment/article/plastic-pollution (Accessed April 13, 2021)

Earth 2020: An Insider’s Guide to a Rapidly Changing Planet (2020. Tortell P. (ed.). Cambridge : Open Book Publishers, 274 p. — https://doi.org/10.11647/OBP.0193

Baran B. (2020). Plastic waste as a challenge for sustainable development and circularity in the European Union. Ekonomia i Prawo. [Economics and Law], 19 (1), pp. 7–20. doi: https://doi.org/10.12775/EiP.2020.001

Lau W.W.Y., Shiran Y., Bailey R.M., Cook E., Stuchtey M.R., Koskella J., Velis C.A., Godfrey L., Boucher J., Murphy M.B., Thompson R.C., Jankow-ska E., Castillo A.C., Pilditch T.D., Dixon B., Koerselman L., Kosior E., Favoino E., Gutberlet J., Baulch S., Atreya M.E., Fischer D., He K.K., Petit M.M., Sumaila U.R., Neil E., Bernhofen M.V., Lawrence K., Palardy J.E. Supplementary Materials for “Evaluating Scenarios Toward Zero Plastic Pollution. Science. 2020. Vol. 369 (6510). P. 1455–1461. — https://doi.org/10.1126/science.aba9475″. 2020. Vol. 175. p. — http://science.sciencemag.org

Le Guern C. (2019). When the mermaids cry: the great plastic tide. — URL: https://plastic-pollution.org/ (Accessed April 13, 2021)

Bishop G., Styles D., Lens P.N.L. Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International. 2020. Vol. 142. Article 105893. 12 p. — https://doi.org/10.1016/j.envint.2020.105893

Galloway T. S., Cole M., Lewis C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, 1 (5), Article 0116, 8 p. — https://doi.org/10.1038/s41559-017-0116

Revel M., Châtel A., Mouneyrac C. (2018). Micro(nano)plastics: A threat to human health? Current Opinion in Environmental Science & Health, Vol. 1, pp. 17–23. — https://doi.org/10.1016/j.coesh.2017.10.003

La Mantia F. P. (1993). Recycling of Plastic Materials. Toronto–Scarborough: ChemTec Publishing, 189 p.

Mikulionok I.O., Radchenko L.B. (2006). Pererobka vtorynnoi syrovyny ekstruziieiu. [Processing of secondary raw materials by extrusion]. Kyiv: NTUU «KPI», 184 p. — URL: https://ela.kpi.ua/handle/123456789/38062 (Ukr.)

Mikulionok I.O. (2009). Obladnannia i protsessy pererobky termoplastychnykh materialiv z vykorystan-niam vtorynnoi syrovyny. [Processes and the equipment of processing of thermoplastics with use of secondary raw materials]. Kyiv: NTUU «KPI». 264 p. — URL: https://ela.kpi.ua/handle/123456789/28259 (Ukr.)

Mikulionok I.O., Riabtsev G.L. (2001). Osnovni metody i shlzkhy vykorystannia polimervmisnykh vidkhodiv [Basic methods and ways of using polymer-containing waste]. Naukovi visti NTUU «KPI». No. 2, pp. 135–147. (Ukr.)

Pro skhvalennia Natsionalnoi strategii upravlinnia vadkhodamy v Ukraini do 2030 roku : Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 08.11.2017. [On approval of the National Waste Management Strategy in Ukraine until 2030: Approved by the order of the Cabinet of Ministers of Ukraine dated November 8, 2017], No. 820-r. — URL: https://zakon.rada.gov.ua/laws/show/820-2017-%D1%80#Text (Accessed April 13, 2021) (Ukr.)

Ministerstvo rozvytku gromad ta terytorii Ukrainy: Stan sfery povodghennia z pobutovymi vadkhodamy v Ukraini za 2019 rik. [Ministry of Development of Communities and Territories of Ukraine: The state of the sphere of household waste management in Ukraine in 2019]. — URL: https://www.minregion.gov.ua/napryamki-diyalnosti/zhkh/terretory/stan-sfery-povodzhennya-z-pobutovymy-vi/ (Accessed April 13, 2021) (Ukr.)

Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society, Part B: Biological Sciences, 364, pp. 1985–1998. doi: https://doi.org/10.1098/rstb.2008.0205

Balasubramani R., Muthunarayanan V., Arumugam K., Periakaruppan R., Singh A., Chang S.W., Chandran T., Singh G.S., Muniraj S. (2021). Treatment of Waste. In: Waste Valorisation: Waste Streams in a Circular Economy / Editors: Carol Sze Ki Lin, Guneet Kaur, Chong Li, Xiaofeng Yang. New York: John Wiley & Sons Ltd. Ch. 3. pp. 33–49. — URL: https://doi.org/10.1002/9781119502753.ch3

Bajracharya R. M., Manalo A. C., Karunasena W., Lau K. (2016). Characterisation of recycled mixed plastic solid wastes: Coupon. Waste Management, 48, pp. 72–80. doi: http://dx.doi.org/10.1016/j.wasman.2015.11.017

Rajmohan K. V. S., Ramya C., Viswanathan M. R., Varjani S. (2019). Plastic pollutants: Waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12, pp. 72–84. — https://doi.org/10.1016/j.coesh.2019.08.006

Ragaert K., Delva L., Geemb van K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Managemen, 69, pp. 24–58. — http://dx.doi.org/10.1016/j.wasman.2017.07.044

Utilizatsiya i obezvrezhivaniye otkhodov (krome obezvrezhivaniya termicheskim sposobom (szhiganiye otkhodov). Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam ITS 15-2016. [Recycling and disposal of waste (except for thermal treatment (waste incineration). Information and technical guide to the best available technologies ITS 15-2016]. Moscow: Biuro NDT, 2016. 198 p. (Rus.)

Plastic waste and recycling. Environmental Impact, Societal Issues, Prevention, and Solutions / ed. T.M. Letcher (2020). London: Elsevier Inc., 686 p. — URL: https://www.researchgate.net/profile/Mohanraj-Chandran/publication/339905534_Conversion_of_plastic_waste_to_fuel/links/5e982e474585150839e08d12/Conversion-of-plastic-waste-to-fuel.pdf

DSTU 4462.0.01:2005. Okhorona pryrody. Povodzhennia z vidkhodamy. Terminy ta vyznachennia poniat. [Environment protection. Wastes management (handling). Terms and concepts definitions]. Kyiv: Derzhspozhivstandart Ukrainy, 2007. 15 p. (Ukr.)

DSTU 4462.3.01:2006. Okhorona pryrody. Povodzhennia z vidkhodamy. Poriadok zdiisnennia operatsii. [Environment protection. Wastes management (handling). Order of operations realization]. Kyiv: Derzhspozhivstandart Ukrainy, 2008. 27 p. (Ukr.)

GOST R 56828.31–2017. Nailuchsgiye dostupnyye tekhnologii. Resursosberezheniye. Iyerarkhichexkiy poryadok obrashcheniya s otkhodami. [Best available techniques. Resources saving. The hierarchical order of waste treatment]. Moscow: Standartinform, 2017. 24 p. (Rus.)

Mikulionok I.O. (2011). Pretreatment of Recycled Polymer Raw Material. Russian Journal of Applied Chemistry, 83 (6), pp. 1105−1113. DOI: https://doi.org/10.1134/S1070427211060371

DSTU 2731–94. Syrovyna polimerna vtorynna. Poriadok zbyrannia, zberigannia i pereroblennia vidkhodiv. [Secondary polymeric raw material. Procedure for waste collection, storage and processing]. Kyiv: Derzhstandart Ukrainy, 1994. 13 p. (Ukr.)

DSTU 2102–92. Resursy materialni vtorynni. Terminy ta vyznachennia. [Secondary material re-sources. Terms and definitions]. Kyiv: Derzhstandart Ukrainy, 1992. 12 p. (Ukr.)

Mikulyonok I.O. (2013). Equipment for preparing and continuous molding of thermoplastic composites. Chemical and Petroleum Engineering, 48 (11–12), pp. 658–661. doi: https://doi.org/10.1007/s10556-013-9676-x

Huang Y., Bird R.N., Heidrich O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52 (1), pp. 58–73. doi: https://doi.org/10.1016/j.resconrec.2007.02.002

Tang Z., Li W., Tam V.W.Y., Xue C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: 6, Article 100036, 22 p. — https://doi.org/10.1016/j.rcrx.2020.100036

Dave S. , Bhogayata A., Arora N. (2017). Impact Resistance of Geopolymer Concrete Containing Recycled Plastic Aggregates. ICRISET2017: International Conference on Research and Innovations in Science, Engineering & Technology, 1, pp. 137–143. doi: https://doi.org/10.29007/nwsh

Silva da D.J., Wiebeck H. (2020). Current options for characterizing, sorting, and recycling polymeric waste. Progress in Rubber Plastics and Recycling Technology, 36 (4). pp. 284–303. — https://doi.org/10.1177/1477760620918603

Dinesh A., Kumar R.P., Abijith S.R. (2020). Experimental Investigation on Bubble Deck Concrete Using Plastic Waste. In: Lecture Notes in Civil Engineering, Recent Developments in Waste Management, A. S. Kalamdhad (ed.). 57, pp. 195–204. — https://doi.org/10.1007/978-981-15-0990-2_14

Spadea S., Farina I., Carrafiello A., Fraternali F. (2015). Recycled nylon fibers as cement mortar reinforcement. Construction and Building Materials, 80, pp. 200–209. — http://dx.doi.org/10.1016/j.conbuildmat.2015.01.075

Awoyera P.O., Adesina A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, Article e00330, 11 p. — https://doi.org/10.1016/j.cscm.2020.e00330

Mikulionok І.О. (2003). Obladnannia dlia mekhanichnogo ruinuvannia polimer- ta elasto-mervmisnykh vidkhodiv. [Equipment for mechanical destruction of polymer- and elastomer-containing waste]. Visnyk KNUTD: Napriamok «Khimiia ta khimichni tekhnologii», No. 1, pp. 131–134. (Ukr.)

Mikulionok I.O. (2015). Tekhnologichni osnovy pereroblennia polimeriv, plastmas i gumovykh sumishei. [Technological bases of processing of polymers, plastics and rubber mixtures]. Kyiv: NTUU «KPI». 312 p. (Ukr.)

Mikulionok I.O. (2020). Tekhnologichni osnovy pereroblennia polimernykh materialov. [Technological bases of processing of polymeric materials]. Kyiv: KPI im. Igoria Sikorskoho. 292 p. — URL: https://ela.kpi.ua/handle/123456789/35084 (Ukr.)

Mikulionok I.O. (2016). Structural Implementation of the Process of Elasto-Deformation Shredding of Rubber-Containing Wastes (Survey of Patents). Chemical and Petroleum Engineering, 51 (9–10), pp. 604–608. doi: https://doi.org/10.1007/s10556-016-0093-9

Mikulionok I.O., Lukach Yu.Ye. (2007). Osobennosti konstruktivnogo ispolneniya rotornykh izmelchiteley dlya rezino- i polimersoderzhashchikh otkhodov (Obzor). [Features of design of rotary grinders for rubber and polymer-containing waste (Review)]. Ecotekhnologii i Resursosberezheniye, No. 3, pp. 69–72. (Rus.)

Singh N., Hui D., Singh R., Ahuja I.P.S., Feo L., Fraternali F. (2017). Recycling of plastic solid waste: A state of art review and future Applications. Composites Part B, 115, pp. 409–422. — http://dx.doi.org/10.1016/j.compositesb.2016.09.013

DSTU 2406–94. Plastmasy, polimery i syntetychni smoly. Khimichni nazvy. Terminy ta vyznachennia. [Plastics, polymers and synthetic resins. Chemical names. Terms and definitions]. Kyiv: Derzhstandart Ukrainy, 1994. 27 p. (Ukr.)

Recycling today. The potential of polypropylene. — URL: https://www.recyclingtoday.com/article/the-recycling-potential-of-polypropylene/ (Accessed April 13, 2021)

Horodytska O., Valdés F.J., Fullana A. (2018). Plastic flexible films waste management — A state of art review. Waste Management, 77, pp. 413–425. doi: https://doi.org/10.1016/j.wasman.2018.04.023

Vnjhschnoye ispolzovaniye polimernykh materialov. [Recycling of polymeric materials]. Ed. Ye. G. Lyubeshkina. Moscow : Khimiya, 1989. 192 p. (Rus.)

Mikulionok I.O. (2012). Klassifikatsiya termoplasticheskikh kompozitsionnykh materialov i ikh napolniteley. [Classification of thermoplastic composites and their fillers]. Plasnicheskiye massy, No. 9, pp. 29–38. (Rus.)

Marzouk O.Y., Dheilly R.M., Queneudec M. (2007). Valorization of post-consumer waste plastic in cementitious concrete composites. Waste management, 27 (2), pp. 310–318. doi: https://doi.org/10.1016/j.wasman.2006.03.012

Tshifularo C.A., Patnaik A. (2020). Recycling of plastics into textile raw materials and products. In: Sustainable Technologies for Fashion and Textiles. Amsterdam: Elsevier Ltd, pp. 311–326. — https://doi.org/10.1016/B978-0-08-102867-4.00013-X

Mikula1 K., Skrzypczak D., Izydorczyk G., Warchoł J., Moustakas K., Chojnacka1 K., Witek-Krowiak A. (2021). 3D printing filament as a second life of waste plastics — A review. Environmental Science and Pollution Research, 28, pp. 12321–12333. — https://doi.org/10.1007/s11356-020-10657-8

Al-Salem S.M., Lettieri P., Baeyens J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29, pp. 2625–2643. doi: https://doi.org/10.1016/j.wasman.2009.06.004

Mikulionok I.O. (2015). Classification of Processes and Equipment for Manufacture of Continuous Products from Thermoplastic Materials. Chemical and Petroleum Engineering, 51 (1–2), pp. 14–19. doi: https://doi.org/10.1007/s10556-015-9990-6

Mikulionok I.O. (2013). Screw extruder mixing and dispersing units. Chemical and Petroleum Engineering, 49 (1–2), pp. 103–109. doi: https://doi.org/10.1007/s10556-013-9711-y

Mikulionok I.O. (2011). Opredeleniye reologicheskikh svoystv termoplastichnykh kompozitsionnykh materialov. [Determination of the rheological properties of thermoplastic composite materials]. Plasnicheskiye massy, No. 7, pp. 26–30. (Rus.)

Mikulenok I.O. (2013). Determining the thermophysical properties of thermoplastic composite materials. International Polymer Science and Technology, 40 (9), pp. 23–28. doi: https://doi.org/10.1177/0307174X1304000905

Brems A., baeyens J., Dewil R. (2012). Recycling and recovery of post-consumer plastic solid waste in a European context. Thermal Science, 16 (1). pp. 669–685. doi: https://doi.org/10.2298/tsci120111121b

Rahimi A., García J.M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1 (6), Article 0046, 11 p. doi: https://doi.org/10.1038/s41570-017-0046

Thiounn T., Smith R.C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58, pp. 1347–1364. doi: https://doi.org/10.1002/pol.20190261

Baena-González J., Santamaria-Echart A., Aguirre J.L., González S. (2020). Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil. Waste Management, 118, pp. 139–149. — https://doi.org/10.1016/j.wasman.2020.08.035

Resursosberegayushchiye tekhnologii : Ekspress-informatsiya. [Resource-saving technologies : Express information]. Moscow: VINITI, 1999. No. 4, pp.11–13. (Rus.)

Lu J.-S., Chang Y., Poon C.-S., Lee D.-J. (2020). Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technology, 312, Article 123615, 14 p. — https://doi.org/10.1016/j.biortech. 2020.123615

Li Q., Faramarzi A., Zhang S., Wang Y., Hu X., Gholizadeh M. (2020). Progress in catalytic pyrolysis of municipal solid waste. Energy Conversion and Management, 226, Article 113525. 30 p. — https://doi.org/10.1016/j.enconman.2020.113525

Larrain M., Passel van S., Thomassen G., Kresovic U., Alderweireldt N., Moerman E., Billen P. (2020). Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. Journal of Cleaner Production, 270, Article 122442. 12 p. — https://doi.org/10.1016/j.jclepro.2020.122442

Latyshenko K.P., Garelina S.A. (2014). Plazmokhimicheskiy reactor po pererabotke polimernykh otkhodov x xodorod i druguyu likxidnuyu produktsiyu. [Plasma-chemical reactor for the processing of polymer waste into hydrogen and other liquid products]. Izvestiya NGTU «MAMI». Ser. «Khimicheskoye mashinostroyeniye i snzhenernaya ekologiya», 3 (1), pp. 10–17. (Rus.)

Corn Plastic to the Rescue. — URL: https://www.smithsonianmag.com/science-nature/corn-plastic-to-the-rescue-126404720/ (Accessed April 13, 2021)

Scaffaro R., Maio A., Sutera F., Gulino E.F., Morreale M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11 (4). Article 651, 20 p. doi: https://doi.org/10.3390/polym11040651

Ispolzovaniye materialnykh resursov za rubezhom: Referativnyy sbornik. [Use of material resources abroad: Abstract collection]. Moscow: VINITI, 1991. Lss. 11, p. 57. (Rus.)

Resursosberegayushchiye tekhnologii : Ekspress-informatsiya. [Resource-saving technologies: express information]. Moscow: VINITI, 1999. No. 17, pp.19–23. (Rus.)

Gul V.E., Ryzhenkova I.P. (1997). Ecologicheskiye aspekty vtorichnogo ispolzovaniya amortizovannykh upakovok iz polimernykh materialov. [Environmental aspects of recycling depreciated plastic packaging]. Tara i upakovka, No. 1, pp. 40–43. (Rus.)

Kishk M.W., Karam H.J., Al-Qassimi M., Al-Rowaih A.A., Al-Wadi M.H., Al-Salem S.M. (2020). Study of commercial thermoplastic biodegradable polyester resin as a solid waste mitigation route using ASTM D 5988-18. WIT Transactions on Ecology and the Environment. Conference: WASTE MANAGE-MENT 2020, Madrid, Spain, 247, pp. 115–123. doi: https://doi.org/10.2495/WM200111

Chua H., Yu P.H.F., Ma C.K. (1999). Accumulation of Biopolymers in Activated Sludge Biomass. Applied Biochemistry and Biotechnology, 77–79 (1–3), pp. 389–399. doi: https://doi.org/10.1385/abab:78:1-3:389

Herzog B., Kohan M.I., Mestemacher S.A., Pagilagan R.U., Redmond K. (2013). Polyamides. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 1–36. — https://doi.org/10.1002/14356007.a21_179.pub3

Sharma H.B., Vanapalli K.R., Cheelaa VR S., Ranjan V.P., Jaglan A.K., Dubey B., Goel S., Bhattacharya J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation & Recycling, 162, Article 105052, 12 p. — https://doi.org/10.1016/j.resconrec.2020.105052

Kulkarni B.N., Anantharama V. (2020). Repercussions of COVID-19 pandemic on municipal solid waste management: Challenges and opportunities. Science of the Total Environment, 743, Article 140693, 37 p. — https://doi.org/10.1016/j.scitotenv.2020.140693

Klemeš J.J., Fan Y.V., Tan R.R., Jiang P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, Article 109883. 7 p. — https://doi.org/10.1016/j.rser.2020.109883

Parashar N., Hait S. (2021). Plastics in the time of COVID-19 pandemic: Protector or polluter? Science of the Total Environment, 759, Article 144274, 15 p. — https://doi.org/10.1016/j.scitotenv.2020.144274

Sharina I.A., Perepechko L.N., Anshakov A.S. (2016). Perspektivy ispolzovaniya plazmennoy technologii dlya pererabotki/unichtozheniya technogennykh otkhodov. [Prospects for the use of plasma technology for processing/destruction of industrial waste]. EKO, No. 12, pp. 28–35. (Rus.)

Kasimov A.M., Semyenov V.T., Aleksandrov A.N., Kovalenko A.M. (2006). Tvyerdyye bytovyye otkhody. Problemy i resheniya. Tekhnologii, oborudovaniye. [Municipal solid waste. Problems and solutions. Technologies, equipment]. Kharkov: KhNAGKh, 301 p. (Rus.)

Nanda S.,· Berruti F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19, pp. 1433–1456. — https://doi.org/10.1007/s10311-020-01100-y

Klemeš J.J., Fan Y.V., Jiang P. (2021). Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43 (13), pp. 1549–1565. — https://doi.org/10.1080/15567036.2020.1801906

Vollmer I., Jenks M.J.F., Roelands M.C.P., White R.J., Harmelen van T., de Wild P., Laan van der G.P., Meirer F., Keurentjes J.T.F., Weckhuysen B.M. (2020). Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, pp. 15402–15423. doi: https://doi.org/10.1002/anie.201915651

Abukasim S.M., Zuhria F., Saing Z. 2019. Alternative management of plastic waste. Journal of Physics: Conference Series. 1st Borobudur International Symposium on Applied Science and Engineering (BIS-ASE), 1517, Article 012041, 7 p. doi: https://doi.org/10.1088/1742-6596/1517/1/012041

Mikulionok I.O. (2001). Osnovni metody vukorystannia gumovmisnykh vidkhodiv. [Basic methods of using rubber-containing waste]. Khimichna promyslovist Ukrainy. No. 5, pp. 53–58. (Ukr.)

How to Cite
Mikulionok, I. (2021). A STATE OF ART AND PROSPECTS OF PLASTIC SOLID WASTE MANAGEMENT. Energy Technologies & Resource Saving, (2), 52-73. https://doi.org/10.33070/etars.2.2021.05
Raw material processing and resource saving

Most read articles by the same author(s)