GENERALIZED MATHEMATICAL MODEL OF PHYSICAL FIELDS OF TECHNOLOGICAL REDISTRIBUTIONS OF MANUFACTURING ELECTROGRAPHITE PRODUCTS

Keywords: electrographite products, pressing, burning, graphitization, furnace equipment, mathematical model, numerical modeling

Abstract

A generalized mathematical model of the physical fields of the main technological redistributions of electrographite products is developed, which is based on a continuous-discrete approach to the description of nonlinear behavior of solids, liquids and gases, and bulk media. It is shown that the continuous formulation of physical processes in the technology of carbongraphite production is based on the Euler frame of reference and may include the following equations: conservation of mass, momentum and energy, electrical conductivity in the vortex-free approximation of electric potential and transport of chemical components of combustion reactions. The discrete formulation of physical processes in bulk materials used in the technology of production of carbon graphite products is based on the Lagrangian frame of reference and may include the following equations: translational and rotational motion and energy. The application of the generalized mathematical model for construction or refinement of mathematical and numerical models of separate redistributions for performance of the numerical analysis of physical fields and parameters of processes and the equipment on examples of pressing of "green" electrode preparations and theoretical research of effective thermophysical properties of loose carbonaceous materials. On the basis of the developed generalized statement, the complex of separate mathematical models of such redistributions of production of electrographite production as: calcination of carbonaceous materials in electrocalciners, gasification of carbonaceous materials in the equipment of rotary calcination furnaces is also formulated and specified, burning and graphitization of electrographite blanks.  Bibl. 40, Fig.  4.

Author Biography

S.V. Leleka, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

Candidate of Technical Sciences

References

Panov Ye.M., Leleka S.V., Karvatskii A.Ya., Mikulionok I.O. (2020). Enerhoresursoefektyvne vyrobnytstvo izostatychnoho hrafitu. [Energy efficient production of isostatic graphite]. Kyiv : Igor Sikorsky Kyiv Polytechnic Institute, 140 p. (Ukr.)

Pedchenko A.Yu., Panov Ye.M., Karvatskii A.Ya., Leleka S.V., Lazarev T.V. (2017). Teoretychno-eksperymentalni doslidzhennia pechei grafituvannia Kastmera. [Theoretical and experimental studies of Castner`s furnace]. Kyiv : Igor Sikorsky Kyiv Polytechnic Institute, 174 p. (Ukr.)

Kutuzov S.V., Buryak V.V., Derkach V.V., Panov E.N., Karvatskii A.Ya., Vasil’chenko G.N., Leleka S.V., Chirka T.V., Lazarev T.V. (2014). Making the Heat-Insulating Charge of Acheson Graphitization Furnaces More Efficient. Refractories and Industrial Ceramics, 55 (1), pp. 15–16. doi: https://www.doi.org/10.1007/s11148-014-9648-5.

Ivanenko O., Trypolskyi A., Gomelya N., Karvatskii A., Vahin A., Didenko O., Konovalova V., Strizhak P. (2021). Development of a Catalyst for Flue Gas Purification from Carbon Monoxide of Multi-Chamber Furnaces for Baking Electrode Blanks. Journal of Ecological Engineering, 22 (1), pp. 174–187. doi: https://www.doi.org/10.12911/22998993/128857.

Gasik M.M., Gasik M.I., Urazlina O.Yu. (2004). Modelirovanie termicheskogo i e`lektricheskogo rezhimov raboty` e`lektrokal`czinatora pri termicheskoj obrabotke antraczita. [Simulation of thermal and electrical operating modes of an electric calciner during heat treatment of anthracite]. Metallurgicheskaya i gornorudnaya promy`shlennost`, No. 5, pp. 18–23. (Rus.)

Gasik M.M., Gasik M.I., Urazlina O.Yu. (2004). Modelirovanie teplotekhnicheskikh proczessov termoobrabotki antraczita pri vozdushnom i plenochnom okhlazhdenii kozhukha e`lektrokal`czinatora. [Modeling of heat engineering processes of heat treatment of anthracite with air and film cooling of the electric calciner casing]. Metallurgicheskaya i gornorudnaya promy`shlennost`, No. 6, pp. 31–35. (Rus.)

Gasik M.M., Gasik M.I., Petrov B.F. (2006). Komp`yuternoe modelirovanie i opy`tno-promy`shlennoe osvoenie tekhnologii odnostadijnoj prokalki antraczita v e`lektrokal`czinatore. [Computer modeling and pilot industrial development of the technology of one-stage calcination of anthracite in an electric calciner]. Metallurgicheskaya i gornorudnaya promy`shlennost`, No. 3, pp. 27–30. (Rus.)

Perron J., Bouvette J.-F., Dupuis M. (1996). Optimization of Anthracite Calcination Process in a Vertical Electric Arc Furnace. Light Metals 1996: Annual meeting and exhibition of the Minerals, Metals and Materials Society, pp. 597–602.

Hachette R., Bui R.T., Simard G., Perron J., Bouvette J.-F., Dupuis M. (1997). A CFD Dynamic Model of the Anthracite Calciner. Light Metals 1997: Annual meeting and exhibition of the Minerals, Metals and Materials Society, pp. 677–687.

Gasik M.M., Gasik M.I. (2011). Modeling of anthracite treatment in an electrocalcinator. Modern problems of metallurgy, Vol. 14, pp. 100–108.

Yang Y., Gong S., Ning Q., Zhou X., Zhao H. (2018). Development and Application of Electro-calciners with Increased Calcination Temperature. Light Metals, pp. 1363–1371. doi: https://www.doi.org/10.1007/978-3-319-72284-9_178.

Panov E.M., Lazarev T.V., Karvatskii A.Ya., Leleka S.V., Mikulionok I.O., Derkach V.V., Tiutiunnik P. (2019). Suchasnyi stan resursoenerhozberezhennia u tekhnolohii vyrobnytstva vuhletsevmisnoho napovniuvacha elektrodnykh vyrobiv (Ohliad). [The current state of resource and energy saving in the technology of production of carbon-based filler of electrode products (Review)]. Energotekhnolohii ta resursozberezhennia, No. 1, pp. 17–34. doi: https://www.doi.org/10.33070/etars.1.2019.02. (Ukr.)

Pöschel T., Schwager T. (2005). Computational granular dynamics models and algorithms. Berlin, Heidelberg : Springer-Verlag, 322 p. (DE)

Göncü F. (2012). Mechanics of granular materials: constitutive behavior and pattern transformation. Enschede : Ipskamp Drukkers, 144 p. (DE)

Rao K.K., Nott P.R. (2008). An Introduction to Granular Flow. New York : Cambridge University Press, 490 p.

Lazariev T.V., Karvatskii A.Ya., Panov Ye.M., Leleka S.V., Pedchenko A.Yu. (2016). Zakonomirnosti protsesu vysokotemperaturnoho obroblennia sypuchykh vuhletsevykh materialiv v elektrychnykh pechakh. [Regularities of the process of high-temperature processing of bulk carbon materials in electric furnaces]. Kyiv.: NTUU «KPI», 156 p. (Ukr.)

Lazarev T.V., Karvaczkii A.Ya., Leleka S.V., Pedchenko A.Yu. (2016). Mathematical model of the extrusion process of a viscous-plastic carbon mass. [Matematicheskaya model` proczessa e`kstruzii vyazko-plastichnoj uglerodnoj massy`]. Visnyk NTU «KhPI».

Ser.: Novi rishennia v suchasnykh tekhnolohiiakh, No. 12. pp. 31–37. doi: https://www.doi.org/10.20998/2413-4295.2016.12.05. (Ukr.)

Karvatskii A.Ya., Lazariev T.V., Tyshchenko O.S. (2015). Matematychne modeliuvannia ekstruzii elektrodnykh zahotovok. [Mathematical modeling of extrusion of electrode blanks]. Visnyk NTUU «KPI». Ser.: Khimichna inzheneriia, ekolohiia ta resursozberezhennia, No.1, pp. 12–16. (Ukr.)

Malakhov S.A. (2004). Sovershenstvovanie tekhnologi obzhiga uglegrafitovoj produkczii v mnogokamerny`kh pechakh obzhiga zakry`togo tipa. [Improvement of the technology of roasting of carbon-graphite products in multi-chamber closed type roasting furnaces] : Avtoref. dis. … Cand. Tekhn. Nauk : Specz. 05.16.02 “Metallurgiya cherny`kh, czvetny`kh i redkikh metallov”. Vladikavkaz, 30 p. (Rus.)

Shibalov S.N. (2004). Sovershenstvovanie teplovy`kh proczessov s czel`yu povy`sheniya kachestva obzhiga zagotovok iz uglegrafitovy`kh materialov. [Improvement of thermal processes in order to improve the quality of firing workpieces made of carbongraphite materials] : Avtoref. dis. … Cand. Tekhn. Nauk : Specz. 05.16.02 “Metallurgiya cherny`kh, czvetny`kh i redkikh metallov”. Moskva, 30 p. (Rus.)

Hajduk A., Goede F. Innovations in the Design and Construction of Ring Pit Furnaces. — URL : https://www.yumpu.com/en/document/view/14559453/innovations-in-the-design-and-construction-of-ring-pit-sacmi (Accessed September 25, 2020).

Karvatskii A.Ya., Pulinets I.V., Shylovych I.L. (2012). Matematychna model teplo-hidrodynamichnoho stanu bahatokamernoi pechi pry vypaliuvanni elektrodnykh zahotovok. [Mathematical model of thermo-hydrodynamic state of a multi-chamber furnace during firing of electrode blanks]. Skhidno-Yevropeiskyi zhurnal peredovykh tekhnolohii, No. 1/4, pp. 33–37. (Ukr.)

Pulinecz I.V., Panov E.N., Karvaczkij A.Ya., Lazaryev T.V., Chirka T.V. (2014). Teploobmen v mnogokamerny`kh pechakh obzhiga uglegrafitovy`kh izdelij. [Heat transfer in multi-chamber furnaces for roasting carbon-graphite products]. Kiev : NTUU «KPI», 175 p. (Rus.)

Znamerovskij V.Yu. Yashkina V.V. (1984). Matematicheskoe modelirovanie proczessov teploobmena v e`lektricheskikh pechakh soprotivleniya pri proizvodstve e`lektrodnogo grafita. [Mathematical modeling of heat transfer processes in electric resistance furnaces in the production of electrode graphite]. Promy`shlennaya e`nergetika, No. 2, pp. 31–33. (Rus.)

Znamerovskij V.Yu. (1986). Osobennosti resheniya zadach teploprovodnosti s vnutrennim istochnikom teploty. [Features of solving problems of heat conduction with an internal heat source]. Promy`shlennaya e`nergetika, No. 3, pp. 24–26. (Rus.)

Znamerovskij V.Yu. (1994). Matematicheskoe modelirovanie proczessa grafitaczii [Mathematical modeling of the graphitization process]. Moscow : Metallurgiya, 64 p. (Rus.)

Shen C., Zhang M., Li X. (2015). Numerical study on the heat recovery and cooling effect by built-in pipes in a graphitization furnace. Applied Thermal Engineering, Vol. 90, pp. 1021–1031. doi: https://www.doi.org/10.1016/j.applthermaleng.2015.04.036.

Piekło J., Maj M. (2015). Analysis of the State of Stress in the Connection of Graphite Electrodes. Archives of Foundry Engineering, Vol. 15, pp. 85–88.

Karvatskii A.Ya., Leleka S.V., Pedchenko A.Yu., Lazariev T.V. (2016). Numerical analysis of physical fields of graphitization process of electrode production in Castner`s furnace. Eastern-European Journal of Enterprise Technologies, 6 (5), pp. 19–25. doi: 10.15587/1729-4061.2016.83191.

Karvatskii A., Mikulionok I., Leleka S., Solovei V. (2020). Numerical Simulation of Elasto-Plastic Behavior of Isotropic Composite Materials. Lecture Notes in Mechanical Engineering, Vol. 1, pp. 492–501. doi: https://www.doi.org/10.1007/978-3-030-50794-7_48.

Huilgol R.R., Mena B., Piau J.M. (2002). Finite stopping time problems and rheometry of Bing-ham fluids. Journal of Non-Newtonian Fluid Mechanics, Vol. 102, pp. 97–107. doi: https://www.doi.org/10.1016/S0377-0257(01)00166-5.

Papanastasiou T.C. (1987). Flow of materials with yield. Journal of Rheology, 31, pp. 385–404. doi: https://www.doi.org/10.1122/1.549926.

Karvatskii A., Panov Ye., Vasylchenko G., Vytvytskyi V., Korolenko K. (2019). Determining efficient values for the thermophysical properties of bulk materials. Eastern-European Journal of Enterprise Technologies, 2 (5), pp. 55–62. doi: https://www.doi.org/10.15587/1729-4061.2019.164791.

ANSYS. — URL: https://www.ansys.com/ (Accessed September 25, 2019).

The OpenFOAM Foundation. — URL: http://www.openfoam.org (Accessed March 11, 2019).

Karvatskii A.Ya., Lazariev T.V., Shvachko D.H., Tyshchenko O.S. (2016). Reolohichni vlastyvosti vuhletsevykh kompozytsii v diapazoni temperatury 120–170 °C. [Rheological properties of carbon compositions in the temperature range 120–170 C]. Visnyk NTU «KhPI». Ser.: Novi rishennia v suchasnykh tekhnolohiiakh, No.18, pp. 74–79. doi: https://www.doi.org/10.20998/2413-4295.2016.18.11. (Ukr.)

Vershinina E.P., Gil’debrandt E.M., Frizorger V.K. (2011). Plastic properties of homogenized coke-pitch compositions. Russian Journal of Non-Ferrous Metals, 52 (3), pp. 205–208. doi: https://www.doi.org/10.3103/S1067821211030230.

Karvatskii A.Ya., Lazarev T.V., Pedchenko A.Yu. (2016). E`ksperimental`noe issledovanie teplovogo sostoyaniya promy`shlennogo pressa dlya formovaniya uglerodnoj produkczii. [Experimental study of the thermal state of an industrial press for molding carbon products]. Visnyk Khmelnytskoho natsionalnoho universytetu. Ser.: Tekhnichni nauky, No. 3, pp. 188–194. (Rus.)

LIGGGHTS Open Source Discrete Element Method Particle Simulation Code. — URL: http://www.liggghts.com (Accessed October 24, 2018).

ParaView. An open-source, multi-platform data analysis and visualization application. — URL: http://www.paraview.org/ (Accessed January 28, 2020).

Published
2021-06-20
How to Cite
Leleka, S. (2021). GENERALIZED MATHEMATICAL MODEL OF PHYSICAL FIELDS OF TECHNOLOGICAL REDISTRIBUTIONS OF MANUFACTURING ELECTROGRAPHITE PRODUCTS. Energy Technologies & Resource Saving, (2), 28-43. https://doi.org/10.33070/etars.2.2021.03
Section
Energy saving technologies