STUDY OF THE INFLUENCE OF COVERINGS OF EXTENDED RADIATING PIPES ON THEM HEAT RADIATION, WHEN HEATING LARGE OBJECTS AND HEATING INDUSTRIAL ROOMS

  • V.S. Pikashov The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • L.N. Trotsenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • T.V. Vinogradova The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • V.A. Velikodny The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: heat radiation, long pipes, special coatings

Abstract

It is shown that for heating rooms and objects large in length and volume, the use of extended emitting pipes is most appropriate. A method for heating extended objects is described, in which the principle of radiation from radiating pipes with a length of more than 30 m is used in a garage-defroster of railway cars. The heating system of the garage-defroster includes a firebox-heat generator, long pipes of 90 m along the wagons, the control and instrumentation system A. The firebox and the control and instrumentation cabinets are installed in a separate room. The defrost system circuit is essentially a large emitter. The entire heat-radiating circuit is a closed system of direct and return pipes through which a low-temperature (300–400 °C) coolant circulates. The industrial operation of such a system at one of the Ukrainian factories has confirmed the advantages in comparison with the known defrosting systems: reliability, easy operation, high efficiency, safety and environmental friendliness, low capital costs, a minimum of instrumentation and automation, minimal thermal inertia. Ways of increasing the uniformity of temperature and heat radiation from pipes are considered: recirculation of the coolant in the working circuit and applying coatings with different emissivity to the pipe surface. So, with a recirculation rate of the coolant in the working circuit of the industrial defrosting system from 3 to 5, the temperature difference between the surface of the emitting pipes at the first and distant cars was 100 or more degrees. Therefore, cars that are closer to the coolant entrance to the system defrosted faster than others. Two new methods for controlling the radiation intensity of long pipes along their length are proposed: coating coatings with different emissivity on the surface of pipes and coating with maximum and minimum emissivity, which alternate between themselves, around the perimeter of the rings. The results of laboratory experiments on the dependence of the heat radiation of pipes on the methods of applying special coatings to them are shown, which showed that coating in a certain order allows you to change the nature of the distribution of temperatures and heat radiation on surrounding surfaces, significantly reducing their decrease along the length of the radiating pipe. Ref. 18, Fig. 4.

Author Biographies

V.S. Pikashov, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

L.N. Trotsenko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

V.A. Velikodny, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

References

Machkashi A., Bankhidi A. Luchistoye otopleniye. [Radian heating]. Ed. V.N.Bogoslovsky. Moscow : Stroyizdat, 1985. 191 pp. (Rus.)

Rodin A.K. Gazovoye luchistoye otopleniye. [Gas radiated heating]. Leningrad : Nedra, 1997. 191 pp. (Rus.)

Shumilov R.N., Tolstova Yu.N., Pomper A.A. Osobennosti proyektirovaniya sistem luchistogo otopleniya s ispol’zovaniyem gaza. [Design features of radiant heating systems using gas]. S.O.K. Santekhnika, otopleniye, konditsionirovaniye. [Plumbing, heating, air conditioning]. 2008. No. 2. pp. 52–58. (Rus.)

Pat. 42065 Ukr., 7 F 23 C 3/00. Hazovyy radiatsiynyy pal’nyk dlya opalennya prymishchen. [Gas radiation burner for space heating]. O.M. Semernin, A.Ye. Yerynov. Publ. 15.10.2001, Bull. 9. (Ukr.)

Revun M.P., Yakovleva A.V. Raschetnaya temperatura poverkhnosti otrazhatelya U-obraznogo «temnogo» trubchatogo izluchatelya. [The calculated surface temperature of the reflector of the U-shaped “dark” tubular emitter]. Metallurgicheskaya teplotekhnika. [Metallurgical heat engineering]. 2010. Iss. 2. pp. 185–189. (Rus.)

Dohl A. Duntelstahler und Einflub der Bauart auf Warmmetechnische Raumparameter. Gas warme international. 1998. No. 2. pp. 104–108. (De.)

Numrich R. Wirkungsgrade van strahlungsheizungen. Gas warme international. 1991. No. 7–8. pp. 331–334. (De.)

Semernin A.M., Semernina S.D., Levchenko A.A., Kuzmich A.M. Energosberegayushchiye tekhnologii dlya otopleniya proizvodstvennykh pomeshcheniy. [Energy-saving technologies for heating industrial premises]. Promyshlennaya teplotekhnika. [Industrial heat engineering]. 2004. 26 (23). pp. 76–79. (Rus.)

Pikashov V.S., Trotsenko L.N. Effektivnyy sposob obogreva smerzshikhsya gruzov v zheleznodorozhnykh vagonakh i otopleniye proizvodstvennykh pomeshcheniy. [An effective way of heating frozen goods in railway cars and heating industrial premises]. Ecotekhnologii i resursosberezheniye. [Eco- technology and Resource Saving]. 2006. No. 6. pp. 76–79. (Rus.)

Pat. na korysnu model 67932 Ukr., 7 F 23 C 3/00. Systema rozmorozhuvannya sypuchykh vantazhiv, zmerzlykh v zaliznychnykh vahonakh. [System of defrosting bulk cargo, frozen in railway cars]. V.S.Pikashov, L.M. Trotsenko, V.O. Velykodnyy, T.V. Vynogradova, K.O. Zuy. Publ. 25.03.2012, Bull. 415. (Ukr.)

Trotsenko L.M., Pikashov V.S., Velykodnyy V.O., Stepanyuk A.S., Zuy K.O. Efektyvnyy sposib obihrivu syrovyny, shcho zmerzlas’, v zaliznychnykh vahonakh. [An effective way to heat frozen raw materials in rail cars]. Keramyka – nauka y zhyzn’. [Ceramics — science and life]. 2012. No. 1/2. pp. 28–38. (Ukr.)

Vinogradova T.V., Pikashov V.S., Trotsenko L.N. Povysheniye ravnomernosti temperatury po dline protyazhennykh trub dlya obogreva krupnykh promyshlennykh pomeshcheniy. [Increasing temperature uniformity along the length of extended pipes for heating large industrial premises]. In: Teplotekhnika i energetika v metallurgii : XVII Mezhdunarodnaya konferentsiya [In: Heat engineering and energy in metallurgy : 17th International Conference], Dnepropetrovsk, Ukraina. Dnepropetrovsk : NMetAU, 2014. pp. 29–30. (Rus.)

Pat. 2246663 RF, F 23 D 14/12, 2002. Sposob luchistogo obogreva pomeshcheniy. [The method of radiant heating]. A.M. Karasevich, Ye.V. Kreynin. Publ. 20.02.2005. (Rus.)

Pat. na vynakhid 109093 Ukr., F 23 D 14/12, F 28 F 13/18, V 05 D 1/38. Sposib infrachervonoho radiatsiynoho opalennya velykykh prymishchen’ ta nahrivu ob’yektiv. [The method of infrared radiation heating large premises and heating the lens]. V.S. Pikashov, V.O. Velykodnyy, L.M. Trotsenko, T.V. Vynohradova, S.V. Pravylo. Publ. 11.07.2016. Bull. 13. (Ukr.)

Pat. na vynakhid 112391, MPK F 14/12 (2006/01), F 13/18 (2006/01). Sposib infrachervonoho radiatsiynoho opalennya prymishchen ta nahrivu poverkhon. [Method for infrared radiation heating of rooms and heating surfaces]. V.S. Pikashov, V.O. Velykodnyy, L.M. Trotsenko, T.V. Vynogradova, S.V. Pravylo. Publ. 11.07.2001. Bull. 33. (Ukr.)

Pikashov V.S., Trotsenko L.N., Velikodnyy V.A., Vinogradova T.V., Savran N.V. Otsenka vozmozhnosti ravnomernogo teplovydeleniya po dline «temnogo» trubchatogo izluchatelya. [Evaluation of the possibility of uniform heat generation along the length of the «dark» tubular emitter]. In: Teplotekhnika, energetika i ekologiya v metallurgii. [In: Heat engineering, energy and ecology in metallurgy]. Ed. Yu.S. Proydakha. 2017. Vol. 1. pp. 143–146. (Rus.)

Gerashchenko O.A. Osnovy teplometrii. [Thermometry Basics]. Kyiv : Naukova dumka, 1971. 191 pp. (Rus.)

Pikashov V.S., Yerinov A.Ye., Klevchishkin V.A. Vliyaniye pokrytiy na izluchatel'nuyu sposobnost staley. [The effect of coatings on the emissivity of steels]. Teplofizika visokikh temperature. [Thermophysics of high temperatures]. 1980. No. 4. pp. 741–744. (Rus.)

Published
2020-06-20
How to Cite
Pikashov, V., Trotsenko, L., Vinogradova, T., & Velikodny, V. (2020). STUDY OF THE INFLUENCE OF COVERINGS OF EXTENDED RADIATING PIPES ON THEM HEAT RADIATION, WHEN HEATING LARGE OBJECTS AND HEATING INDUSTRIAL ROOMS. Energy Technologies & Resource Saving, (2), 19-26. https://doi.org/10.33070/etars.2.2020.03