DEEP OXIDATION OF METHANE OVER MULTICOMPONENT CoO BASED CATALYSTS ON CERAMIC MONOLITHS

  • G.R. Kosmambetova L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
  • A.I. Trypolskyi L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
  • S.O. Soloviev L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
  • A.Yu. Kapran L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
  • P.E. Strizhak L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
Keywords: methane, deep oxidation, CoO-CeO2(SrO)-Pd(Pt)-catalysts, monolithic ceramic supports, catalytic heat generators

Abstract

Multicomponent CoO-CeO2(SrO)-Pd(Pt) catalysts on ceramic monoliths of a honeycomb structure (synthetic cordierite) were shown to be efficient for the deep oxidation of methane. Based on the results of the studying the effect of Al2O3 as a second carrier-substrate, the content of CoO, modifying/promoting additives of strontium and cerium oxides, palladium, platinum on catalyst activities, it was found that a 4,9%CoO-4,9%CeO2-0,1%Pd/cordierite specimen is optimal for use in catalytic heat generators. The catalyst of this composition, with increased mechanical strength, thermal resistance and resistance to carbonization, provides CO free oxidation of methane in the stoichiometric mixture with oxygen. Bibl. 33, Fig. 4.

Author Biographies

G.R. Kosmambetova, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Chemical Sciences

A.I. Trypolskyi, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Chemical Sciences

S.O. Soloviev, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

Doctor of Chemical Sciences

A.Yu. Kapran, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Chemical Sciences

P.E. Strizhak, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv

Corresponding Member of NASU, Doctor of Chemical Sciences

References

Paredes J.R., Diaz E., Diez F.V., Ordonez S. Combustion of methane in lean mixtures over bulk transition-metal oxides: evaluation of the activity and self-deactivation. Energy & Fuels. 2009. Vol. 23. pp. 86–93.

Boreskov G.K., Levitskii E.A., Ismagilov Z.R. [Fuel combustion and catalytic heat generators]. [D.I.Mendeleev J. All-Union Chem. Soc.]. 1984. 29 (4). pp. 19–25. (Rus.)

Tereshchenko A.D., Karp I.M., Levaniuk T.A., Marchenko G.S., Izbash V.I., Solyanik V.G., Kolomeev V.N., Redko B.I. [Catalytic Combustion of Fuel as a One Way of Power Installations Environmental Capabilities Rising]. Ecotechnologii i Resursosberezhenie [Ecotechnologies and Resource Saving]. 2003. Vol. 2. pp. 27–30. (Rus.)

Yashnik S.A., Ismagilov Z.R., Kuznetsov V.V. Ushakov V.V., Rogov V.A., Ovsyannikova I.A. High-temperature catalysts with a synergetic effect of Pd and manganese oxides. Catal. Today. 2006. Vol. 117. pp. 525–535.

Sibikin Yu.D. [Unconventional and renewable energy sources]. Moscow : IP RadioSoft, 2008. 338 p. (Rus.)

Simonov A.D., Yazykov N.A., Dubinin Yu.V. [Efficient combustion of methane in the fluidized bed of catalyst]. Chimiya v interecah ustoychivogo razvi- tiya [Chemistry for Sustainable Development]. 2013. Vol. 21. pp. 173–178. (Rus.)

Alkhazov T.G., Margolis L.Ya. [Deep catalytic oxidation of organics]. Moscow : Khimiia, 1985. 192 p. (Rus.)

Li Z., Hoflund B. A review on complete oxidation of methane at low temperatures. J. Natural Gas Chem. 2003. Vol. 12. pp. 153–160.

Gеlin P., Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts : A review. Appl. Catal. B. 2002. Vol. 39. pp. 1–37.

Chen J., Arandiyan H., Gao X., Li J. Recent advances in catalysts for methane combustion. Catal. Surv. Asia. 2015. Vol. 19. pp. 140–171.

Matam S.K., Aguirre M.H., Weidenkaff A., Ferri D. Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor. J. Phys. Chem. C. 2010. Vol. 114. pp. 9439–9443.

Hayes R.E., Kolaczkowski S.T., Li P.K.C., Awdry S. The palladium catalyzed oxidation of methane: reaction kinetics and the effect of diffusion barriers. Chem. Eng. Sci. 2001. Vol. 56. pp. 4815–4835.

Kylhammar L., Carlsson P.-A., Skoglundh M. Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts. J. Catal. 2011. Vol. 284. pp. 50–59.

Beck I.E., Bukhtiyarov V.I., Pakharukov I.Y. Zaikovsky V.I., Kriventsov V.V., Parmon V.N. Pla- tinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J. Catal. 2009. Vol. 268. pp. 60–67.

Fouladvand S., Skoglundh M., Carlsson P.-A. A transient in situ infrared spectroscopy study on methane oxidation over supported Pt catalysts. Catal. Sci. & Technology. 2014. Vol. 4. pp. 3463–3473.

Navarro R.M., Peсa M.A., Fierro J.L.G. Methane oxidation on metal oxides – Metal oxides. Chemistry and applications. Edited by J.L.G. Fierro, 2006. pp. 463–482.

Ivanov D.V., Pinaeva L.G., Sadovskaya E.M., Isupova L.A.Influence of the mobility of oxygen on the reactivity of La1–xSrxMnO3 perovskites in methane oxidation. Kinetika i Kataliz. 2011. 52 (3). pp. 410–418. (Rus.) [Kinetics and Catalysis. 2011. Vol. 52, Iss. 3. pp. 401–408. (Engl. Transl.)]

Shaskolskaya M.P. Crystallography. Moscow : Vysshaya Shkola, 1984. 376 p. (Rus.)

Kadenatsi B.M., Spiridonov K.N., Shibanova M.D. Spectral study of a cobalt chromium oxide catalyst. Kinetika i Kataliz. [Kinetics and Catalysis]. 1978. 19 (5). pp. 1259–1263. (Rus.)

Chen J., Zhang X., Arandiyan H., Peng Y., Chang H., Li J. Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catal. Today. 2013. Vol. 201. pp. 12–18.

Margolis L.Ya., Krylov O.V. Some features of catalysts for deep oxidation – Problems of kinetics and catalysis. Deep catalytic oxidation of hydrocarbons. Moscow : Nauka, 1981. pp. 120–124. (Rus.)

Li W., Lin Y. A novel spinel-type Co/Mn catalyst for methane oxidation at low temperatures. Chem. Lett. 2002. Vol. 31. pp. 84–85.

Kantserova M.R., Gavrilenko K.S, Kosmambetova G.R., Ilyin V.G., Orlyk S.N. Deep oxidation of methane over nano-sized ferrites with spinel structures. Teoret. i eksperim. Khimiya [Theoretical and Experimental Chemistry]. 2003. 39 (5). pp. 310–316. (Rus.) Theor. Exp. Chem. 2003. Vol. 39, Issue 5. pp. 322–329 (Engl. Transl.29)

Tretyakov Yu.D., Lepis H. Chemistry and technology of solid-phase materials. Moscow : Izdatelstvo Moscowskogo Gosudarstvennogo Universiteta, 1985. 256 p. (Rus.)

Wang D., Kang Y., Doan-Nguyen V., Chen J., Kngas R., Wieder N.L., Bakhmutsky K., Gorte R.J., Murray C.B. Synthesis and oxygen storage capacity of two dimensional ceria nano- crystals. Angew. Chem. Int. Ed. 2011. Vol. 50. pp. 4378–4381.

Fan X., Li L., Jing F., Li J., Chu W. Effects of preparation methods on CoAlOx/CeO2 catalysts for methane catalytic combustion. Fuel. 2018. Vol. 225. pp. 588–595.

Kantserova M.R. M.R., Orlik S.N. Effect of a structure-size factor on the catalytic properties of complex oxide compositions in the reaction of deep methane oxidation. Kinetika i Kataliz. 2007. 48 (3). pp. 438–453. (Rus.) [Kinetics and Catalysis]. 2007. Vol. 19, Iss. 3. pp. 414–429. (Engl. Transl.)]

Marion M.C., Garbowski E., Primet M. Physico- chemical properties of copper oxide loaded alumina in methane combustion. J. Chem. Soc., Faraday Trans. 1990. Vol. 86. pp. 3027–3032.

Soloviev S.O., Kyriienko P.I., Popovych N.O. Effect of CeO2 and Al2O3 on the activity of Pd/Co3O4/cordierite catalyst in the three-way catalysis reactions (CO/NO/CnHm). J. Environ. Sci. 2012. Vol. 24. pp. 1327–1333.

Zhang S., Liu S., Zhu X., Yang Y., Hu W., Zhao H., Qu R., Zheng C., Gao X. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts // App. Surf. Sci. 2019. Vol. 479. pp. 1132–1140.

Liu Y., Jia L., Hou B., Sun D., Li D. Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis. Appl. Catal. A. 2017. Vol. 530. pp. 30–36.

Tang L., Yamaguchi D., Leita B., Sage V., Burke N., Chiang K. The effects of oxidation-reduction treatment on the structure and activity of cobalt-based catalysts. Catal. Commun. 2015. Vol. 59. P. 166–169.

Taguchi M., Nakane T., Hashi K., Ohki S., Shi- mizu T., Sakka Y., Matsushita A., Abe H., Funazukuri T., Naka T. Reaction temperature variations on the crystallographic state of spinel cobalt aluminate. Dalton Trans. 2013. Vol. 42. pp. 7167–7176.

Published
2019-06-20
How to Cite
Kosmambetova, G., Trypolskyi, A., Soloviev, S., Kapran, A., & Strizhak, P. (2019). DEEP OXIDATION OF METHANE OVER MULTICOMPONENT CoO BASED CATALYSTS ON CERAMIC MONOLITHS. Energy Technologies & Resource Saving, (2), 24-33. https://doi.org/10.33070/etars.2.2019.04
Section
Raw material processing and resource saving