CARBON NANOMATERIAL FORMATION AT THE PROCESSING OF FRESH-REDUCED IRON BY PRODUCTS OF NATURAL GAS CONVERSION

  • A.A. Nebesniy The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • V.G. Kotov The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • M.A. Svyatenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • D.S. Filonenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • A.I. Khovavko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • B.I. Bondarenko The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: fresh-reduced iron, iron fragmentation, carbon monoxide, carbon cuffs, carbon nanotubes

Abstract

The mechanism of process of carbon nanomaterial formation at moderate temperatures while processing of fresh-reduced iron by products of air conversion of natural gas is considered. It is shown that under given conditions the size and the shape of the resulting carbon are depended on the temperature and the size of microscopic iron grains formed during reduction. These iron grains are the catalyzer of the reaction of carbon monoxide disproportionation. It is concluded that the formation of nucleus of the new carbon phase occurs at the contact boundaries of neighboring grains of newly redused iron with the subsequent formation in these places of ring-shaped carbon cuff. Nanotubes are forming as a result of further carbon crystallization and separation of iron particles from the main mass is occurring i.e., there is a fragmentation of the substance of the catalyst. According to the results of laboratory studies the optimum temperature of carbon nanotubes formation in the environment of converted gas is 600–650 °C. The evidence of the hypothesis that the mechanism of the reaction of carbon monoxide disproportionation flows through the intermediate stage of iron oxides formation is given. Bibl. 28, Fig. 6.

Author Biographies

V.G. Kotov, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

M.A. Svyatenko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

A.I. Khovavko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

B.I. Bondarenko, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Academician of NAS of Ukraine, Doctor of Technical Sciences, Professor

References

Bondarenko B.I., Shapovalov V.A., Garmash N.I. Teorija i tehnologija beskoksovoj metallurgii, Kiev : Naukova dumka, 2003, 536 p. (Rus.)

Kataliticheskie svojstva veshhestv. Ed. V.A.Rojter, Kiev : Naukova dumka, 1968, 1462 p. (Rus.)

Rostovcev S.T. Teorija metallurgicheskih processov, Moscow : Metallurgizdat, 1956, 516 p. (Rus.)

Esin O.A., Gel’d P.V. Fizicheskaja himija pirometallurgicheskih processov, Sverdlovsk : Metallurgizdat, 1962, 671 p. (Rus.)

Kolesnik N.F., Kudievskij S.S., Kirichenko A.G., Priluckij O.V. Termokataliticheskij raspad monooksida ugleroda, Zaporozh’e : Zaporozhskàya gosudarstvennaya inzhenernaya akademiya, 2006, 363 p. (Rus.)

Chesnokov V.V., Bujanov R.L. Obrazovanie uglerodnyh nitej pri kataliticheskom razlozhenii uglevodorodov na metallah podgruppy zheleza i ih splavah, Uspehi himii, 2000, 69 (7), pp. 675–692. (Rus.)

Neorganicheskoe materialovedenie. Osnovy nauki o materialah. Ed. G.G.Gnesin, V.V.Skorohod, Kiev : Naukova dumka, 2008, 1, 1152 p. (Rus.)

Derjagin B.V., Fedoseev D.V. Rost almaza i grafita iz gazovoj fazy, Moscow : Nauka, 1977, 116 p. (Rus.)

Messerle V.E., Ustimenko A.B. Plazmennaja pererabotka uglej, Teplojenergetika, 2013, (12), pp. 23–29. (Rus.)

Uvarova I.V. Fenomenologicheskie aspekty dispergirovanija produktov pri topohimi-cheskih reakcijah vosstanovlenija metallov iz oksidov (Obzor), Poroshkovaja metallurgija, 1990, (2), pp. 59–65. (Rus.)

Livshic B.G. Metallografija, Moscow : Metallurgija, 1971, 405 p. (Rus.)

Guljaev A.P. Metallovedenie, Moscow : Metallurgija, 1978, 647 p. (Rus.)

Fizicheskoe metallovedenie. Vyp. 2. Fazovye prevrashhenija. Metallografija / Per. s angl. Pod red. R. Kana , Moscow : Mir, 1968, 490 p. (Rus.)

Bokshtejn B.S., Bokshtejn S.Z., Zhuhovickij A.A. Termodinamika i kinetika diffuzii v tverdyh telah, Moscow : Metallurgija, 1974, 280 p. (Rus.)

Dzhejkok M., Parfit Dzh. Himija poverhnostej razdela faz, Moscow : Mir, 1984, 269 p. (Rus.)

Korotich V.I. Osnovy teorii i tehnologii podgotovki syr’ja k domennoj plavke, Moscow : Metallurgija, 1978, 208 p. (Rus.)

Harris P. Uglerodnye nanotruby i rodstvennye struktury. Novye materialy XXI veka, Moscow : Tehnosfera, 2003, 336 p. (Rus.)

Pikunov M.V., Desipri A.I. Metallovedenie, Moscow: Metallurgija, 1980, 256 p. (Rus.)

Kurdjumov G.V., Utevskij L.M., Jentin R.I. Prevrashhenie v zheleze i stali, Moscow : Nauka, 1977, 238 p. (Rus.)

Krishtal M.A. Mehanizm diffuzii v zheleznyh splavah, Moscow : Metallurgija, 1972, 399p. (Rus.)

Vladimirov L.P. Termodinamicheskie raschety ravnovesija metallurgicheskih reakcij, Moscow: Metallurgija, 1970, 528 p. (Rus.)

Kotov V.G., Svyatenko A.M., Khovavko A.I., Nebesnyi A.A., Filonenko D.S. Jeksperimental’nye issledovanija processa sazheobrazovanija pri vysokoj koncentracii vodoroda v gaze, soderzhashhem monooksid ugleroda, Jenergotehnologii i resursosberezhenie [Energy Technology and Resource Saving], 2014, (2), pp. 33–38. (Rus.)

Dubrov N.F., Lapkin N.I. Jelektrotehnicheskie stali, Moscow : Metallurgija, 1963, 384 p. (Rus.)

Vashhenko A.I., Zen’kovskij A.G., Livshic A.E., Shul’c L.A. Okislenie i obezuglerozhivanie stali, Moscow : Metallurgija, 1972, 336 p. (Rus.)

Bogdandi L, Jengel’ G.Ju. Vosstanovlenie zheleznyh rud, Moscow : Metallurgija, 1971, 520 p. (Rus.)

Jestrin B.M. Proizvodstvo i primenenie kontroliruemyh atmosfer, Moscow : Metallurgija, 1973, 392 p. (Rus.)

Naumov V.A., Pavlova T.N. Issledovanie kinetiki reakcii disproporcionirovanija okisi ugleroda na zheleznom katalizatore, Zhurnal fizicheskoj himii [J. Phys. Chem.], 1972, (6), pp. 1480–1483. (Rus.)

Ivensen V.A. Fenomenologija spekanija i nekotorye voprosy teorii, Moscow : Metallurgija, 1985, 246 p. (Rus.)

Published
2015-12-20
How to Cite
Nebesniy, A., Kotov, V., Svyatenko, M., Filonenko, D., Khovavko, A., & Bondarenko, B. (2015). CARBON NANOMATERIAL FORMATION AT THE PROCESSING OF FRESH-REDUCED IRON BY PRODUCTS OF NATURAL GAS CONVERSION. Energy Technologies & Resource Saving, (5-6), 34-42. Retrieved from https://etars-journal.org/index.php/journal/article/view/167
Section
Raw material processing and resource saving

Most read articles by the same author(s)

1 2 > >>