REAGENTLESS CLEANING OF WASTE WATER FROM SODIUM HYPOCHLORITE WITH CAVITATIONAL FIELDS

  • V.T. Javorskij Lviv Polytechnic National University, Lviv
  • N.M. Gnatyshyn Lviv Polytechnic National University, Lviv
  • Z.O. Znak Lviv Polytechnic National University, Lviv
Keywords: wastewater, sodium hypochlorite, cleaning, cavitation

Abstract

The complex of studies on the decomposition of sodium hypochlorite as a component of wastewater under isothermal conditions in the cavitation fields produced under the influence of acoustic vibrations ultrasound range is made. The influence of the initial temperature of the environment and the power of ultrasonic radiation on the main kinetic parameters of the process, its duration and specific energy consumption for the decomposition of sodium hypochlorite are defined. We suggest that during cavitation decomposition sodium hypochlorite strong oxidants such as ozone are produced. It is shown that the decomposition of sodium hypochlorite under the influence of ultrasonic vibrations is much more intense than in industrial catalytic processes, and specific energy consumption for the decomposition of sodium hypochlorite is much lower.Bibl. 13, Fig. 3, Table 2.

Author Biographies

V.T. Javorskij, Lviv Polytechnic National University, Lviv

Doctor of Technical Sciences, Professor

Z.O. Znak, Lviv Polytechnic National University, Lviv

Doctor of Technical Sciences, Professor

References

Znak Z.O., Gnatyshyn N.M. [Intensification of thermal decomposition of sodium and calcium hypochlorite]. Vostochno-Evropejskij zhurnal peredovyh tehnologij, 2010, 48 (6/6), pp. 40–43. (Ukr.)

Zapol’s’kyj A.K. Fizyko-himichni osnovy tehnologii’ ochyshhennja stichnyh vod. Kiev : Libra, 2000, 552 p.(Ukr.)

Frank A. Miller. Disinfection with Liquid Sodium Hypochlorite: Principles, Methods, and Lessons Learned, Florida Water Resources Journal, April, 2012, р. 4–8.

Yangang Feng, Daniel W. Smith, Jams R. Bolton. Photolesis of aqueous free clorine species (HOCl and OCl-) with 254 nm ultraviolet light, J. Environ. Eng., 2007, (6), pр. 277–284.

Lister M.W. Decomposition of sodium hypochlorite; the catalyzed reaction, Canadian Journal of Chemistry, 2011, 34 (4), pр. 479–488.

Kwang-Wook Kim, Eil-Hee Lee, Dong-Yong Chung, Jei-Kwon Moon, Hyun-Soo Shin, Jung-Sik Kim, Dong-Woo Shin. Manufacture characteristics of metal oxide–hydroxides for the catalytic decomposition of a sodium hypochlorite solution, Chemical Engineering Journal, 2012, (8), pр. 200–202.

Moorhouse J. Modern Chlor-Alkali Technology. Chichester : MPG Books Ltd., 2001.

Gladikova L.A., Teterin V.V., Kir’janov S.V., Bezdolja I.N. [Application of urea to clean gases from chlorine], Texts from the 5th International Conference «Cooperation for Waste Issues», Kharkov, Ukraine, 2–3 Apr. 2008. — The electronic version of the conference materials, 2008. (Rus.)

Bikbulatov I.H. [Waste-free production of chlorohydrins]. Moscow : Himija, 2000, 167 p. (Rus.)

Kolesnikov I.V. [Stability of real solutions of sodium hypochlorite], Himicheskaja promyshlennost, 1991, (6), pp. 361–365. (Rus.)

Kardashev T.A. [Physical methods of intensification of the processes of chemical technology]. Moscow : Himija, 1991, 208 p. (Rus.)

Margulis M.A. Zvukohimicheskie reaktsii i sonolyuminestsentsiya. Moscow : Himiya, 1986, 288 р.(Rus.)

Оtchych О. [Biological aspects of influence of ozone on blood],Vіsnyk L’vіvs’kogo unіversitetu. Serіja bіologіchna, 2012, iss. 59, pp. 23–36. (Ukr.)

Published
2015-02-20
How to Cite
Javorskij, V., Gnatyshyn, N., & Znak, Z. (2015). REAGENTLESS CLEANING OF WASTE WATER FROM SODIUM HYPOCHLORITE WITH CAVITATIONAL FIELDS. Energy Technologies & Resource Saving, (1), 44-50. Retrieved from https://etars-journal.org/index.php/journal/article/view/131
Section
Environment protection