METHODS OF STUDYING THE STRUCTURE AND PURITY OF THE CARBON NANOTUBES (REVIEW)

  • A.S. Vavrysh The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • Yu.V. Marchuk The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
  • Yu.G. Prazhennik The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv
Keywords: carbon nanotubes, research methods, defects

Abstract

During the last several decades carbon nanotubes have gradually become an important industrial material. Insufficiency and no systematic information on research methods and purity of structure leads to the impossibility of comparing the results obtained by different authors. This article is a review of the scientific literature on the only goal to review and summarize existing methods such as scanning electron microscopy, transmission electron microscopy, Raman, termogravimetric analysis and study of the adsorption of gas to the surface. The review of existing defects in graphene layers and nanotubes has also been made in this article. Bibl. 72, Fig. 3.

Author Biographies

A.S. Vavrysh, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

PhD Student

Yu.V. Marchuk, The Gas Institute of the National Academy of Sciences of Ukraine, Kyiv

Candidate of Technical Sciences

References

Iijima S. Helical microtubules of graphitic carbon, Nature, 1991, 354, iss. 6348, pp. 56–58.

Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition, Journal Cryst Growth, 1976, 32 (3), pp. 335–349.

Freiman S., Hooker S., Migler K. Measurement Issues in Single Wall Carbon Nanotubes NIST Recommended Practice Guide, Special Publication 960-19, NIST Materials Science and Engineering Laboratory and Sivaram Arepalli NASA-DSC, 2008, p. 78.

Bondarenko B.I., Svyatenko A.M., Savenko L.V. [Carbonization iron-ore materials in restoring the converted gas in a fluidized bed : Use of natural gas in an industry], Kiev : Naukova dumka, 1969, pр. 1–5. (Rus.)

Murr L.E., Guerrero P.A. Carbon nanotubes in wood soot, Atmospheric Science Letters, 2006, 7 (4), pp. 93–95.

Bang J.J., Guerrero P.A., Lopez D.A., Murr L.E., Esquivel E.V. Carbon nanotubes and other natural gas combustion streams, Journal of Nanoscience and Nanotechnology, 2004, 4, pp. 1354–1358.

Dillon A.C., Gennett T., Jones K.M., Alleman J.L., Parilla PA., Heben M.J. A simple and complete purification of singlewalled carbon nanotubes materials, Advanced Materials, 1999, 11 (16), pp. 1354–1358.

Krause B., Petzold G, Pegel S., Potschke P. Correlation of carbon nanotube dispersabilty in aqueous surfactant solutions and polymers, Carbon, 2009, 47 (3), pp. 602–612.

Grossod N, Regev O., Loos J., Meuldijik J., Koning C. Tme-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy, Analytical Chemistry, 2005, 77 (16), pp. 5135–5139.

Osswald S., Havel M., Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman Spectroscopy, Journal of Raman Spectroscopy, 2007, 38 (6), pp. 728–736.

Mansfield E, Kar A., Hooker S. Applications of TGA in quality control of SWCNT’s, Analytical and Bioanalytical Chemistry, 2010, 393 (3), pp. 1071–1077.

Caplovicova M., Danis T., Buc D, Caplovac L., Janik J., Bello I. An alternative approach to carbon nanotube sample preparation for TEM investigation, Ultramicroscopy, 2007, 107 (8), pp. 692–697.

Lehman J.H., Terrones M., Mansfield E., Hurdt K.E., Meunier V. Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 2011, 49, pp. 2581–2602.

Dawei Gao, Weiwei Liu, Li Hou. Observation of the growth of carbon nanotubes prepared at low temperature, Crystal Research and Technology, 2008, 43 (9), pp. 949–952.

Cumings J., Goldhaber-Gordon D., Zettl A. Electron Microscopy of the operation of nanoscale devices, Material Research Society Symposium Proceedings, 2005, 839, pp. 7.1.1–7.1.12.

Zhou D., Chow L. Complex structure of carbon nanotubes and their implications for formation mechanism, Journal of Applied Physics, 2003, 93 (12), pp. 9972–9976.

Zhang L., Chen L., Wells T., El-Gomati M. Bamboo and herringbone shape carbon nanotubes and carbon nanofibres synthesized in direct current- plasma enhanced chemical vapor deposition, Journal of Nanoscience and Nanotechnology, 2009, 9 (7), pp. 4502–4506.

Endo M., Takeuchi K., Hiraoka T., Furuta T., Kasai T., Sun X. Stacking nature of grapheme layers in carbon nanotubes and nanofibres, Journal of Physics and Chemistry of Solids, 1997, 58 (11), pp. 1707–1712.

Hashimoto A. Direct evidence for atomic defects in grapheme layers, Nature, 2004, 430, pp. 870–873. 20. Ge M., Sattler K. Observation of fullerene cones // Chemical Physics Letters, 1994, 220, p.192–196.

Cataldo F. The impact of fullerene-like concept in carbon black science, Carbon, 2002, 430, pp. 870–873.

Tamura R., Akagi K., Tsukada M. Electronic properties of polygonal defects in graphitic carbon sheets, Physical Review, 1997, B56, pp. 1404–1411.

Belenkov E.A., Zinatulina Y.A. [Topological defects in graphene layers], Bulletin of the Chelyabinsk State University, 2008, (25), pр. 32–38. (Rus.)

Yakobson B.I., Avouris P. Mechanical properties of carbon nanotubes, Topics Appl. Phys, 2001, 80, pp. 287–327.

Zhou T. Long-range interaction between Stone-Wales defects in zigzag single-walled carbon nanotubes, Physical Review B, 2005, 72, pp. 193407.

Li L., Reich S., Robertson J. Defects energies of graphite: density-functional calculations, Physical Review, 2005, B72, pp. 184109.

Thrower P.A. The study of defects in graphite by transmission electron spectroscopy, Chemistry and Physics of Carbon, 1969, 5, pp. 217–319.

Stone A.J., Wales D.J. Theoretical studies of icosahedral C60 and some related species, Chemical Physics Letters, 1986, 128 (5–6), pp. 501–503.

Girit C.O., Meyer J.C., Erni R., Rossell M.D., Kisielowski C., Yang L. Graphene at the edge: stability and dynamics, Science, 2009, 323(5922), pp. 1705–1708.

Cruz-Silva E., Cullen D.A., Gu L., Romo-Herrera J.M., Munoz-Sandoval E., Lopez-Urias F. Heterodoped nanotubes: theory, synthesis and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes, AGS Nano, 2008, 2 (3), p. 441–448.

Romo-Herrera J.M., Cullen D.A.,Cruz-Silva E., Ramirez D., Sumpter B.G., Meunier V. The role of sulfur in the synthesis of novel carbon morphologies : from covalent Y-junctions to sea-urchin- like structures, Advanced Functional Materials, 2009, 430 (7002), pp. 870–879.

Benoit J.P., Buisson J.P., Chauvet O., Gordon C., Lefrant S. Low-frequency Raman studies of multiwalled carbon nanotubes : experiments and theory, Physical Review B, 2002, 66 (7), pp. 073417-1-4.

Lefrant S. Raman and SERS studies of carbon nanotubes systems, Current Applied Physics, 2002, 2 (6), pp. 479–482.

Jorio A., Satio R., Dresselhaus M.S., Dresselhaus M. Raman spectroscopy in grapheme related system, Willey-VCH, 2011, p. 329.

DiLeo R.A., Landi B.J., Raffaelle R.P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, Journal of Applied Physics, 2007, 101(6), p. 064301-1-5.

Kim U.J., Liu X.M., Furtado C.A. et al. Infrared- Active Vibrational Modes of Single-Walled Carbon Nanotubes, Physical Review Letters, 2005, 95 (15), pp. 157402-4.

Belin T., Epron F. Characterization methods of carbon nanotubes: a review, Materials Science and Engineering B, 2005, 409 (2), pp. 46–99.

Bantignies J.-L., Sauvajol J.-L., Rahmani A. et. al. Infrared-active photons in carbon nanotubes, Physical Review B, 2006, 74 (19), p. 195425-5.

Sbai K., Rahmani A., Chadli H et al. Infrared Spectroscopy of Single-Walled Carbon Nanotubes, Jour- nal of Physical Chemistry B, 2006, 110 (25), pp.12388–12393.

Mirsa A., Tyagi P.K., Rai P. et al. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping, Journal of nanoscience and nanotechnology, 2007, 7 (6), pp. 1820–1823.

Montesal I., Mucoz E., Benito A.M. et al. FTIR and Thermogravimetric analyses of biotin-functionalized single-walled carbon nanotubes, Journal of nanoscience and nanotechnology, 2007, 7 (10), pp. 3473–3476.

Korlacki R., Steiner M., Huniong Q. Optical fourier transform spectroscopy of single-walled carbon nanotubes and single molecules, Chemical Physics, 2007, 8 (7), pp. 1049–1055.

Nanotechnologies — Characterization of single- wall carbon nanotubes using near infrared photoluminescence spectroscopy. Reference number of document: ISO/CD TS 10867. — Electronic resource: http://www.iso.org/iso/catalogue_ detail.htm?csnumber=46245.

Brunauer A.S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers, Journal of American Chemisrty Society, 1938, 60 (2), pp. 309–319.

Do D.D. Adsorption analysis:equilibria and kinetics, London : Imperial College Press, 1998.

Rouquerol F., Rouquerol J., Sing K. Adsorption by powders and porous solids, principles, methodology and applications, London: Academic Press, 1999.

Peigney A., Laurent C., Flahaut E., Basca R.R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 2001, 39, pp. 507–514.

Lucio D., Laurent D., Roger G., Yasushi S., Noriko Y. KOH activated carbon multiwall nanotubes, Carbon: Science and Technology, 2009, 3, pp. 120–124.

Frackowiak E., Delpeux S., Jurewicz K., Szostak K., Cazorla-Amoros D., Beguin F. Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, 2002, 361, pp. 35–41.

Raymundo-Pinero E., Azais P., Cacciaguerra T., Cazorla-Amoroa D., Beguin F. High surface area carbon nanotubes prepared by chemical activation, Carbon, 2002, 40, pp. 1614–1617.

Raymundo-Pinero E., Azais P., Cacciaguerra T., Cazorla-Amoroa D., Linares-Solano A., Beguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization, Carbon, 2005, 43, pp. 786–795.

Jurewicz K., Babel K., Pietrzak R., Delpeux S., Wachowska H. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Cabon, 2006, 44, pp. 2368–2375.

Li Z., Pan Z., Dai S. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification, Journal of Colloid Interface Science, 2004, 277, pp. 35–42.

Kim S.H., Mulholland G.W., Zachariah M.R. Density measurement of size selected multiwalled carbon by mobility-mass characterization, Carbon, 2009, 47, pp. 1297–1302.

Available from: www.swentnano.com

Laurent Ch., Flahaut E., Peigney A. The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, 2010, 48, iss. 10, pp. 2994–2996.

Pang L.S.K., Saxby J.D., Chatfield S.P. Thermogravimetric analysis of carbon nanotubes and nanoparticles, Journal of Physical Chemistry, 1993, 97 (1), pp. 6941–6942.

Lima A, Musumed A, Liu H-W, Waclawik E, Silva G. Purity evaluation and influence of carbon nanotubeon carbon nanotube/graphite thermal stability, Journal of Thermal Analysis and Calorimetry, 2009, 97 (1), pp. 257–263.

Dunens O.M., MacKenzie K.J., Harris A.T. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environmental Science and Technology, 2009, 43 (20), pp. 7889–7894.

Kowalska E., Kowalczyk P., Radomska J., Czerwosz E., Wronka H., Bystrzejewski M. IInfluence of high vacuum annealing treatment on some properties of carbon nanotubes, Journal of Thermal Analysis and Calorimetry, 2006, 86 (1), pp. 115–119.

Huang W., Wang Y., Luo G., Wei F. 99,9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing, Carbon, 2003, 41(13), pp. 2585–2890.

Lin W., Moon K.-S., Zhang S., Ding Y., Shang J., Chen M. Microwave makes carbon nanotubes less defective, ACS Nano, 2010, 4 (3), pp. 1716–1722.

Born D., Andrews R., Jacques D., Anthony J., Bailin C., Meier M.S. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Letters, 2002, 2 (6), pp. 615–619.

Feng Y., Zhang H., Hou Y., McNicholas T.P., Yuan D., Yang S. Room temperature purification of few-walled carbon nanotubes with high yield, ACS Nano, 2008, 2 (8), pp.1634–1638.

Trigueiro J.P.C., Sivla G.G., Lavall R.L., Furtado C.A., Oliveira S., Ferlauto A.S. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM and SEM methods, Journal of Nanoscience and Nanotechnolgy, 2007, 7 (10), pp. 3477–3486.

Peng L., Tingrnei W. Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media, Applied Physics A: Materials Science and Processing, 2009, 97 (4), pp. 771–775.

Kim D.Y., Yang C.-M., Park Y.S., Kim K.K., Jeong S.Y., Han J.H. Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemic vapor deposition, Chemical Physics Letters, 2005, 413 (1–3), pp. 135–141.

Don-Young K., Young Soo Y., Soon-Min K., Hyoung-Joon J. Preparation of aspect ratio-controlled carbon nanotubes, Molecular Crystals and Liquid Crystals, 2009, 510, pp. 79–86.

Moodley P., Loos J., Niemantsverdriet J.W., Thune P.C. Is there a correlation between catalyst particle size and CNT diameter?, Carbon, 2009, 47 (8), pp. 2002–2013.

Ding F., Rosen A., Campbell EEB, Falk LKL, Bolton K. Graphitic encapsulation of catalyst particles in carbon nanotube production, The Journal of Physical Chemistry B, 2006, 110 (15), pp. 7666–7670.

McKee GSB, Deck C.P., Vecchio K.S. Dimensional control of multi-walled carbon nanotubes in floating- catalyst CVD synthesized, Carbon, 2009, 47 (8), pp. 2085–2094.

Zhang H., Chen Y., Zeng G., Huang H., Xie Z., Jie X. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst, Materials Science and Engineering A, 2007, 464 (1–2), pp. 17–22.

Published
2019-03-20
How to Cite
Vavrysh, A., Marchuk, Y., & Prazhennik, Y. (2019). METHODS OF STUDYING THE STRUCTURE AND PURITY OF THE CARBON NANOTUBES (REVIEW). Energy Technologies & Resource Saving, (1), 32-48. Retrieved from https://etars-journal.org/index.php/journal/article/view/110
Section
Nanotechnology for power industry